Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1441: 705-717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884744

RESUMEN

Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.


Asunto(s)
Mutación , Humanos , Síndrome de Heterotaxia/genética , Cardiopatías Congénitas/genética , Situs Inversus/genética
2.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884729

RESUMEN

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Asunto(s)
Defectos del Tabique Interventricular , Humanos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad/genética , Defectos del Tabique Interventricular/genética , Mutación , Factores de Transcripción/genética
3.
Adv Exp Med Biol ; 1441: 629-644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884738

RESUMEN

Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.


Asunto(s)
Ventrículo Derecho con Doble Salida , Tetralogía de Fallot , Humanos , Tetralogía de Fallot/genética , Ventrículo Derecho con Doble Salida/genética , Mutación , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética , Factores de Transcripción/genética
4.
J Mol Cell Cardiol ; 185: 26-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797718

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Cardiomiopatía Hipertrófica/metabolismo , Haploinsuficiencia , Hipertrofia/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
J Mol Cell Cardiol ; 113: 9-21, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28941705

RESUMEN

The ability to generate patient-specific induced pluripotent stem cells (iPSCs) provides a unique opportunity for modeling heart disease in vitro. In this study, we generated iPSCs from a patient with dilated cardiomyopathy (DCM) caused by a missense mutation S635A in RNA-binding motif protein 20 (RBM20) and investigated the functionality and cell biology of cardiomyocytes (CMs) derived from patient-specific iPSCs (RBM20-iPSCs). The RBM20-iPSC-CMs showed abnormal distribution of sarcomeric α-actinin and defective calcium handling compared to control-iPSC-CMs, suggesting disorganized myofilament structure and altered calcium machinery in CMs of the RBM20 patient. Engineered heart muscles (EHMs) from RBM20-iPSC-CMs showed that not only active force generation was impaired in RBM20-EHMs but also passive stress of the tissue was decreased, suggesting a higher visco-elasticity of RBM20-EHMs. Furthermore, we observed a reduced titin (TTN) N2B-isoform expression in RBM20-iPSC-CMs by demonstrating a reduction of exon skipping in the PEVK region of TTN and an inhibition of TTN isoform switch. In contrast, in control-iPSC-CMs both TTN isoforms N2B and N2BA were expressed, indicating that the TTN isoform switch occurs already during early cardiogenesis. Using next generation RNA sequencing, we mapped transcriptome and splicing target profiles of RBM20-iPSC-CMs and identified different cardiac gene networks in response to the analyzed RBM20 mutation in cardiac-specific processes. These findings shed the first light on molecular mechanisms of RBM20-dependent pathological cardiac remodeling leading to DCM. Our data demonstrate that iPSC-CMs coupled with EHMs provide a powerful tool for evaluating disease-relevant functional defects and for a deeper mechanistic understanding of alternative splicing-related cardiac diseases.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adulto , Animales , Calcio/metabolismo , Células Cultivadas , Conectina/metabolismo , Femenino , Humanos , Ratones , Mutación , Fenotipo , Empalme del ARN/genética , Sarcómeros/metabolismo , Transcriptoma/genética
6.
J Muscle Res Cell Motil ; 38(3-4): 291-302, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29101517

RESUMEN

HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the ß-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.


Asunto(s)
Alelos , Desequilibrio Alélico , Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Regulación Enzimológica de la Expresión Génica , Cadenas Pesadas de Miosina , Sarcómeros , Adulto , Miosinas Cardíacas/biosíntesis , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología
7.
Eur Heart J ; 37(23): 1815-22, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-26497160

RESUMEN

AIMS: Phenotypic heterogeneity and incomplete penetrance are common in patients with hypertrophic cardiomyopathy (HCM). We aim to improve the understanding in genotype-phenotype correlations in HCM, particularly the contribution of an MYL2 founder mutation and risk factors to left ventricular hypertrophic remodelling. METHODS AND RESULTS: We analysed 14 HCM families of whom 38 family members share the MYL2 c.64G > A [p.(Glu22Lys)] mutation and a common founder haplotype. In this unique cohort, we investigated factors influencing phenotypic outcome in addition to the primary mutation. The mutation alone showed benign disease manifestation with low penetrance. The co-presence of additional risk factors for hypertrophy such as hypertension, obesity, or other sarcomeric gene mutation increased disease penetrance substantially and caused HCM in 89% of MYL2 mutation carriers (P = 0.0005). The most prominent risk factor was hypertension, observed in 71% of mutation carriers with HCM and an additional risk factor. CONCLUSION: The MYL2 mutation c.64G > A on its own is incapable of triggering clinical HCM in most carriers. However, the presence of an additional risk factor for hypertrophy, particularly hypertension, adds to the development of HCM. Early diagnosis of risk factors is important for early treatment of MYL2 mutation carriers and close monitoring should be guaranteed in this case. Our findings also suggest that the presence of hypertension or another risk factor for hypertrophy should not be an exclusion criterion for genetic studies.


Asunto(s)
Miosinas Cardíacas/genética , Efecto Fundador , Hipertrofia Ventricular Izquierda/genética , Mutación/genética , Cadenas Ligeras de Miosina/genética , Femenino , Alemania/epidemiología , Humanos , Hipertensión/genética , Hipertensión/mortalidad , Hipertrofia Ventricular Izquierda/mortalidad , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Remodelación Ventricular/genética
8.
Hum Mol Genet ; 23(12): 3115-28, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24459294

RESUMEN

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Its genetic basis is demonstrated by an increased recurrence risk in siblings and familial cases. However, the majority of TOF are sporadic, isolated cases of undefined origin and it had been postulated that rare and private autosomal variations in concert define its genetic basis. To elucidate this hypothesis, we performed a multilevel study using targeted re-sequencing and whole-transcriptome profiling. We developed a novel concept based on a gene's mutation frequency to unravel the polygenic origin of TOF. We show that isolated TOF is caused by a combination of deleterious private and rare mutations in genes essential for apoptosis and cell growth, the assembly of the sarcomere as well as for the neural crest and secondary heart field, the cellular basis of the right ventricle and its outflow tract. Affected genes coincide in an interaction network with significant disturbances in expression shared by cases with a mutually affected TOF gene. The majority of genes show continuous expression during adulthood, which opens a new route to understand the diversity in the long-term clinical outcome of TOF cases. Our findings demonstrate that TOF has a polygenic origin and that understanding the genetic basis can lead to novel diagnostic and therapeutic routes. Moreover, the novel concept of the gene mutation frequency is a versatile measure and can be applied to other open genetic disorders.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Miocardio/patología , Tetralogía de Fallot/genética , Tetralogía de Fallot/patología , Apoptosis , Secuencia de Bases , Proliferación Celular , Estudios de Cohortes , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Frecuencia de los Genes , Humanos , Datos de Secuencia Molecular , Herencia Multifactorial , Mutación , Miocardio/metabolismo , Análisis de Secuencia de ADN , Tetralogía de Fallot/sangre
9.
Pediatr Cardiol ; 36(2): 295-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25135600

RESUMEN

The genetic basis of congenital heart disease remains unknown in most of the cases. Recently, a novel mouse model shed new light on the role of CCN1/CYR61, a matricellular regulatory factor, in cardiac morphogenesis. In a candidate gene approach, we analyzed a cohort of 143 patients with atrial septal defects (ASD) by sequencing the coding exons of CCN1. In addition to three frequent polymorphisms, we identified an extremely rare novel heterozygous missense mutation (c.139C > T; p.R47W) in one patient with severe ASD. The mutation leads to an exchange of residues with quite different properties in a highly conserved position of the N-terminal insulin-like growth factor binding protein module. Further bioinformatic analysis, exclusion of known ASD disease genes as well as the exclusion of the mutation in a very high number of ethnically matched controls (more than 1,000 individuals) and in public genetic databases, indicates that the p.R47W variant is a probable disease-associated mutation. The report about ASD in mice in heterozygous Ccn 1 +/- animals strongly supports this notion. Our study is the first to suggest a relationship between a probable CCN1 mutation and ASD. Our purpose here was to draw attention to CCN1, a gene that we believe may be important for genetic analysis in patients with congenital heart disease.


Asunto(s)
Proteína 61 Rica en Cisteína/genética , Defectos del Tabique Interatrial/genética , Adulto , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Variación Genética , Defectos del Tabique Interatrial/diagnóstico por imagen , Humanos , Masculino , Mutación , Polimorfismo de Nucleótido Simple/genética , Ultrasonografía
10.
J Med Genet ; 48(8): 572-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21239446

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease (1/500) and the most common cause of sudden cardiac death in young people. Pathogenic mutation detection of HCM is having a growing impact on the medical management of patients and their families. However, the remarkable genetic and allelic heterogeneity makes molecular analysis by conventional methods very time-consuming, expensive and difficult to realise in a routine diagnostic molecular laboratory. METHOD AND RESULTS: The authors used their custom DNA resequencing array which interrogates all possible single-nucleotide variants on both strands of all exons (n=160), splice sites and 5'-untranslated region of 12 HCM genes (27 000 nucleotides). The results for 122 unrelated patients with HCM are presented. Thirty-three known or novel potentially pathogenic heterozygous single-nucleotide variants were identified in 38 patients (31%) in genes MYH7, MYBPC3, TNNT2, TNNI3, TPM1, MYL3 and ACTC1. CONCLUSIONS: Although next-generation sequencing will replace all large-scale sequencing platforms for inherited cardiac disorders in the near future, this HCM resequencing array is currently the most rapid, cost-effective and reasonably efficient technology for first-tier mutation screening of HCM in clinical practice. Because of its design, the array is also an appropriate tool for initial screening of other inherited forms of cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Variación Genética , Práctica Profesional , Análisis de Secuencia de ADN/métodos , Heterocigoto , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética
11.
Front Cardiovasc Med ; 9: 816330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265683

RESUMEN

In genetic diseases like hypertrophic cardiomyopathy, reliable quantification of the expression level of mutant protein can play an important role in disease research, diagnosis, treatment and prognosis. For heterozygous ß-myosin heavy chain (ß-MyHC) mutations it has been shown that disease severity is related to the fraction of mutant protein in the myocardium. Yet, heart tissue from patients with genetically characterized diseases is scarce. Here we asked, if even in the case of small endomyocardial biopsies, single quantifications produce reliable results. Myocardial samples were taken from four different regions of an explanted heart of a patient with hypertrophic cardiomyopathy carrying point mutation p.Gly716Arg in ß-MyHC. From both, large samples (15 mg) and small, endomyocardial biopsy-sized samples (≤ 1 mg) myosin was extracted and enzymatically digested to yield a specific peptide of interest that allowed to distinguish mutant and wild-type ß-MyHC. Absolute quantification by mass spectrometry (AQUA) of the peptide of interest was performed repeatedly for both sample sizes to determine the fraction of mutant ß-MyHC. Fractions of mutant ß-MyHC (32% on average) showed only small differences between the four cardiac regions and for large and small samples. The standard deviations were smaller than five percentage points for all cardiac regions. The two quantification methods (large and small sample size) produce results with comparable accuracy and precision. Consequently, with our method even small endomyocardial biopsies allow reliable protein quantification for potential diagnostic purposes.

12.
Biochem Biophys Res Commun ; 405(3): 473-9, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21256114

RESUMEN

Myomesin plays an important structural and functional role in the M-band of striated muscles. The C-terminal domain 13 of myomesin dimerises and forms antiparallel strands which cross-link neighboring Myosin filaments and titin in the M-line of the sarcomeres. These interactions stabilise the contractile apparatus during striated muscle contraction. Since myomesin is an important component of the M-band we screened the myomesin gene for genetic variants in patients with hypertrophic cardiomyopathy (HCM). We identified the missense mutation V1490I in domain 12 of myomesin in a family with inherited HCM. Analytical ultracentrifugation experiments, circular dichroism spectra, and surface plasmon resonance spectroscopy of myomesin fragments were carried out to investigate the effects of the mutation V1490I on structure and function of myomesin domains 11-13 and 12-13. Both the wild type and mutated myomesin domains My11-13 revealed similar secondary structures and formed stable dimers. Mutated myomesin domains My11-13 and My12-13 dimers revealed a reduced thermal stability and a significantly decreased dimerisation affinity, showing disturbed functional properties of V1490I mutated myomesin. However, monomeric myomesin domains My11-12, i.e. without dimerisation domain 13 showed no difference in thermal stability between wild type and V1490I mutated myomesin. In conclusion, the V1490I mutation associated with HCM lead to myomesin proteins with abnormal functional properties which affect dimerisation properties of myomesin domain 13. These effects may contribute to the pathogenesis of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Adulto , Conectina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Musculares/química , Mutación Missense , Linaje , Conformación Proteica , Multimerización de Proteína , Resonancia por Plasmón de Superficie
13.
Basic Res Cardiol ; 106(6): 1041-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21769673

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease, which in about 30% of the patients is caused by missense mutations in one allele of the ß-myosin heavy chain (ß-MHC) gene (MYH7). To address potential molecular mechanisms underlying the family-specific prognosis, we determined the relative expression of mutant versus wild-type MYH7-mRNA. We found a hitherto unknown mutation-dependent unequal expression of mutant to wild-type MYH7-mRNA, which is paralleled by similar unequal expression of ß-MHC at the protein level. Relative abundance of mutated versus wild-type MYH7-mRNA was determined by a specific restriction digest approach and by real-time PCR (RT-qPCR). Fourteen samples from M. soleus and myocardium of 12 genotyped and clinically well-characterized FHC patients were analyzed. The fraction of mutated MYH7-mRNA in five patients with mutation R723G averaged to 66 and 68% of total MYH7-mRNA in soleus and myocardium, respectively. For mutations I736T, R719W and V606M, fractions of mutated MYH7-mRNA in M. soleus were 39, 57 and 29%, respectively. For all mutations, unequal abundance was similar at the protein level. Importantly, fractions of mutated transcripts were comparable among siblings, in younger relatives and unrelated carriers of the same mutation. Hence, the extent of unequal expression of mutated versus wild-type transcript and protein is characteristic for each mutation, implying cis-acting regulatory mechanisms. Bioinformatics suggest mRNA stability or splicing effectors to be affected by certain mutations. Intriguingly, we observed a correlation between disease expression and fraction of mutated mRNA and protein. This strongly suggests that mutation-specific allelic imbalance represents a new pathogenic factor for FHC.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Miosinas Ventriculares/genética , Adulto , Alelos , Desequilibrio Alélico , Análisis Mutacional de ADN , Genotipo , Humanos , Persona de Mediana Edad , Mutación Missense , Linaje , Estabilidad del ARN , ARN Mensajero/análisis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
14.
J Med Genet ; 47(4): 230-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19762328

RESUMEN

BACKGROUND: Ostium secundum atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD), and mutations in cardiac transcription factors, including TBX20, were identified as an underlying cause for ASDII. However, very little is known about disease penetrance in families and functional consequences of inherited TBX20 mutations. METHODS: The coding region of TBX20 was directly sequenced in 170 ASDII patients. Functional consequences of one novel mutation were investigated by surface plasmon resonance, CD spectropolarymetry, fluorescence spectrophotometry, luciferase assay and chromatin immunoprecipitation. RESULTS: We found a novel mutation in a highly conserved residue in the T-box DNA binding domain (I121M) segregating with CHD in a three generation kindred. Four mutation carriers revealed cardiac phenotypes in terms of cribriform ASDII, large patent foramen ovale or cardiac valve defects. Interestingly, tertiary hydrophobic interactions within the mutant TBX20 T-box were significantly altered leading to a more dynamic structure of the protein. Moreover, Tbx20-I121M resulted in a significantly enhanced transcriptional activity, which was further increased in the presence of co-transcription factors GATA4/5 and NKX2-5. Occupancy of DNA binding sites on target genes was also increased. CONCLUSIONS: We suggest that TBX20-I121M adopts a more fluid tertiary structure leading to enhanced interactions with cofactors and more stable transcriptional complexes on target DNA sequences. Our data, combined with that of others, suggest that human ASDII may be related to loss-of-function as well as gain-of-function TBX20 mutations.


Asunto(s)
Foramen Oval Permeable/genética , Defectos del Tabique Interatrial/genética , Válvulas Cardíacas/anomalías , Mutación , Proteínas de Dominio T Box/genética , Adolescente , Animales , Secuencia de Bases , Células COS , Estudios de Casos y Controles , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Dicroismo Circular , ADN/genética , ADN/metabolismo , Femenino , Foramen Oval Permeable/metabolismo , Defectos del Tabique Interatrial/metabolismo , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Linaje , Alineación de Secuencia , Homología Estructural de Proteína , Proteínas de Dominio T Box/metabolismo , Activación Transcripcional
15.
Eur Heart J ; 31(22): 2715-26, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823110

RESUMEN

Advances in molecular genetics present new opportunities and challenges for cardiologists who manage patients and families with cardiomyopathies. The aims of this position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases are to review the general issues related to genetic counselling, family screening and genetic testing in families with a cardiomyopathy, and to provide key messages and suggestions for clinicians involved in their management.


Asunto(s)
Cardiomiopatías/genética , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Cardiomiopatías/diagnóstico , Cardiomiopatías/prevención & control , Femenino , Humanos , Mutación/genética , Linaje , Embarazo , Diagnóstico Prenatal/métodos , Pronóstico , Recurrencia
16.
Hum Mol Genet ; 17(18): 2753-65, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18505755

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a frequent genetic cardiac disease and the most common cause of sudden cardiac death in young individuals. Most of the currently known HCM disease genes encode sarcomeric proteins. Previous studies have shown an association between CSRP3 missense mutations and either dilated cardiomyopathy (DCM) or HCM, but all these studies were unable to provide comprehensive genetic evidence for a causative role of CSRP3 mutations. We used linkage analysis and identified a CSRP3 missense mutation in a large German family affected by HCM. We confirmed CSRP3 as an HCM disease gene. Furthermore, CSRP3 missense mutations segregating with HCM were identified in four other families. We used a newly designed monoclonal antibody to show that muscle LIM protein (MLP), the protein encoded by CSRP3, is mainly a cytosolic component of cardiomyocytes and not tightly anchored to sarcomeric structures. Our functional data from both in vitro and in vivo analyses suggest that at least one of MLP's mutated forms seems to be destabilized in the heart of HCM patients harbouring a CSRP3 missense mutation. We also present evidence for mild skeletal muscle disease in affected persons. Our results support the view that HCM is not exclusively a sarcomeric disease and also suggest that impaired mechano-sensory stress signalling might be involved in the pathogenesis of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Musculares/genética , Mutación Missense , Sarcómeros/genética , Animales , Células COS , Cardiomiopatía Hipertrófica/metabolismo , Línea Celular , Chlorocebus aethiops , Femenino , Ligamiento Genético , Humanos , Proteínas con Dominio LIM , Masculino , Proteínas Musculares/metabolismo , Linaje , Sarcómeros/metabolismo , Población Blanca/genética
17.
Rev Port Cardiol (Engl Ed) ; 39(6): 317-327, 2020 Jun.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-32565061

RESUMEN

INTRODUCTION AND OBJECTIVES: Hypertrophic cardiomyopathy (HCM) is a genetically and phenotypically heterogeneous disease; there is still a large proportion of patients with no identified disease-causing mutation. Although the majority of mutations are found in the MYH7 and MYBPC3 genes, mutations in Z-disk-associated proteins have also been linked to HCM. METHODS: We assessed a small family with HCM based on family history, physical examination, 12-lead ECG, echocardiogram and magnetic resonance imaging. After exclusion of mutations in eleven HCM disease genes, we performed direct sequencing of the TCAP gene encoding the Z-disk protein titin-cap (also known as telethonin). RESULTS: We present a novel TCAP mutation in a small family affected by HCM. The identified p.C57W mutation showed a very low population frequency, as well as high conservation across species. All of the bioinformatic prediction tools used considered this mutation to be damaging/deleterious. Family members were screened for this new mutation and a co-segregation pattern was detected. Both affected members of this family presented with late-onset HCM, moderate asymmetric left ventricular hypertrophy, atrial fibrillation and heart failure with preserved ejection fraction and low risk of sudden cardiac death. CONCLUSIONS: We present evidence supporting the classification of the TCAP p.C57W mutation, encoding the Z-disk protein titin-cap/telethonin as a new likely pathogenic variant of hypertrophic cardiomyopathy, with a specific phenotype in the family under analysis.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Portadoras , Conectina , Proteínas Portadoras/genética , Conectina/genética , Humanos , Mutación , Portugal
18.
Dis Model Mech ; 13(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33033063

RESUMEN

The causal genetic underpinnings of congenital heart diseases, which are often complex and multigenic, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 (MYOM2) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar M-band of the sarcomere, and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 [herein referred to as Drosophila myomesin and myosin binding protein (dMnM)] may be an ortholog of MYOM2, as well as other myosin binding proteins. Its partial loss of function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc (MYH6/7) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart.This article has an associated First Person interview with Emilie Auxerre-Plantié and Tanja Nielsen, joint first authors of the paper.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Conectina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Estudios de Asociación Genética , Proteínas de la Membrana/genética , Tetralogía de Fallot/genética , Animales , Proteínas de Drosophila/metabolismo , Femenino , Humanos , Locomoción , Masculino , Proteínas de la Membrana/metabolismo , Músculos/metabolismo , Mutación/genética , Miocardio , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibrillas/metabolismo , Miofibrillas/patología , Especificidad de Órganos , Unión Proteica , Mapeo de Interacción de Proteínas
19.
Basic Res Cardiol ; 104(1): 90-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18795223

RESUMEN

The familial form of dilated cardiomyopathy (DCM) occurs in about 20%-50% of DCM cases. It is a heterogeneous genetic disease: mutations in more than 20 different genes have been shown to cause familial DCM. LMNA, encoding the nuclear membrane protein lamin A/C, is one of the most important disease gene for that disease. Therefore, we analyzed the LMNA gene in a large cohort of 73 patients with familial DCM. Clinical examination (ECG, echocardiography, and catheterization) was followed by genetic characterization of LMNA by direct sequencing. We detected five heterozygous missense mutations (prevalence 7%) in five different families characterized by severe DCM and heart failure with conduction system disease necessitating pacemaker implantation and heart transplantation. Four of these variants clustered in the protein domain coil 1B, which is important for lamin B interaction and lamin A/C dimerization. Although we identified two novel mutations (E203V, K219T) besides three known ones (E161K, R190Q, R644C), it was remarkable that four mutations represent LMNA hot spots. DCM patients with LMNA mutations show a notable homogenous severe phenotype as we could confirm in our study. Testing LMNA in such families seems to be recommended because genotype information in an individual could definitely be useful for the clinician.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Mutación , Estudios de Cohortes , ADN/genética , ADN/aislamiento & purificación , Cartilla de ADN , Exones , Femenino , Humanos , Linfocitos/fisiología , Masculino , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
20.
EMBO Mol Med ; 11(10): e10018, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31468715

RESUMEN

Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end-stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti-hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co-factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.


Asunto(s)
Acetiltransferasas/metabolismo , Cardiomegalia/fisiopatología , Extensión de la Cadena Peptídica de Translación , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA