Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Drug Metab Dispos ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378703

RESUMEN

Camonsertib is a novel ATR kinase inhibitor in clinical development for advanced cancers targeting sensitizing mutations. This article describes the identification and biosynthesis of an N-glucuronide metabolite of camonsertib. This metabolite was first observed in human hepatocyte incubations and was subsequently isolated to determine the structure, evaluate its stability as part of bioanalytical method development and for use as a standard for estimating its concentration in Phase I samples. The N-glucuronide was scaled-up using a purified bacterial culture preparation and was subsequently isolated using preparative chromatography. The bacterial culture generated sufficient material of the glucuronide to allow for one- and two-dimensional 1H and 13C NMR structural elucidation and further bioanalytical characterization. The NOE data combined with the gradient HMBC experiment and molecular modeling, strongly suggests that the point of attachment of the glucuronide results in the formation of (2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-(5-(4-((1R,3r,5S)-3-hydroxy-8-oxabicyclo[3.2.1]octan-3-yl)-6-((R)-3-methylmorpholino)-1H-pyrazolo[3,4-b]pyridin-1-yl)-1H-pyrazol-1-yl)tetrahydro-2H-pyran-2-carboxylic acid. Significance Statement This is the first report of a glucuronide metabolite of camonsertib formed by human hepatocyte incubations. This study reveals the structure of an N-glucuronide metabolite of camonsertib using detailed elucidation by one- and two-dimensional NMR after scale-up using a novel bacterial culture approach yielding significant quantities of a purified metabolite.

2.
J Chem Inf Model ; 62(24): 6825-6843, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36239304

RESUMEN

The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 µM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 µM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 µM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 µM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.


Asunto(s)
Antivirales , Inhibidores de Proteasas , Virus Zika , Humanos , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Virus Zika/efectos de los fármacos , Virus Zika/enzimología , Infección por el Virus Zika/tratamiento farmacológico
3.
Pharm Res ; 37(7): 141, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661900

RESUMEN

PURPOSE: To advance fundamental biological and translational research with the bacterium Neisseria gonorrhoeae through the prediction of novel small molecule growth inhibitors via naïve Bayesian modeling methodology. METHODS: Inspection and curation of data from the publicly available ChEMBL web site for small molecule growth inhibition data of the bacterium Neisseria gonorrhoeae resulted in a training set for the construction of machine learning models. A naïve Bayesian model for bacterial growth inhibition was utilized in a workflow to predict novel antibacterial agents against this bacterium of global health relevance from a commercial library of >105 drug-like small molecules. Follow-up efforts involved empirical assessment of the predictions and validation of the hits. RESULTS: Specifically, two small molecules were found that exhibited promising activity profiles and represent novel chemotypes for agents against N. gonorrrhoeae. CONCLUSIONS: This represents, to the best of our knowledge, the first machine learning approach to successfully predict novel growth inhibitors of this bacterium. To assist the chemical tool and drug discovery fields, we have made our curated training set available as part of the Supplementary Material and the Bayesian model is accessible via the web. Graphical Abstract.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Gonorrea/tratamiento farmacológico , Aprendizaje Automático , Neisseria gonorrhoeae/efectos de los fármacos , Antibacterianos/química , Teorema de Bayes , Bases de Datos de Compuestos Químicos , Gonorrea/microbiología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Neisseria gonorrhoeae/crecimiento & desarrollo , Relación Estructura-Actividad
4.
Nat Chem Biol ; 13(1): 54-61, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27820797

RESUMEN

Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the ß-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of ß-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for ß-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Peptidil Transferasas/antagonistas & inhibidores , beta-Lactamas/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Peptidil Transferasas/metabolismo , Relación Estructura-Actividad , beta-Lactamas/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-29311070

RESUMEN

Mycobacterium tuberculosis infection is responsible for a global pandemic. New drugs are needed that do not show cross-resistance with the existing front-line therapeutics. A triazine antitubercular hit led to the design of a related pyrimidine family. The synthesis of a focused series of these analogs facilitated exploration of their in vitro activity, in vitro cytotoxicity, and physiochemical and absorption-distribution-metabolism-excretion properties. Select pyrimidines were then evaluated for their pharmacokinetic profiles in mice. The findings suggest a rationale for the further evolution of this promising series of antitubercular small molecules, which appear to share some similarities with the clinical compound PA-824 in terms of activation, while highlighting more general guidelines for the optimization of small-molecule antitubercular agents.


Asunto(s)
Antituberculosos/síntesis química , Diseño de Fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/química , Pirimidinas/síntesis química , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/sangre , Antituberculosos/farmacocinética , Antituberculosos/farmacología , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Femenino , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Nitroimidazoles/sangre , Nitroimidazoles/farmacocinética , Nitroimidazoles/farmacología , Pirimidinas/sangre , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Solubilidad , Relación Estructura-Actividad , Tuberculosis/sangre , Tuberculosis/microbiología
6.
Mol Pharm ; 15(10): 4346-4360, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672063

RESUMEN

Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis ( Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 µM, 1 µM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set ( n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Teorema de Bayes , Descubrimiento de Drogas , Aprendizaje Automático , Máquina de Vectores de Soporte
7.
Pharm Res ; 35(9): 170, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959603

RESUMEN

PURPOSE: To advance translational research of potential therapeutic small molecules against infectious microbes, the compounds must display a relative lack of mammalian cell cytotoxicity. Vero cell cytotoxicity (CC50) is a common initial assay for this metric. We explored the development of naïve Bayesian models that can enhance the probability of identifying non-cytotoxic compounds. METHODS: Vero cell cytotoxicity assays were identified in PubChem, reformatted, and curated to create a training set with 8741 unique small molecules. These data were used to develop Bayesian classifiers, which were assessed with internal cross-validation, external tests with a set of 193 compounds from our laboratory, and independent validation with an additional diverse set of 1609 unique compounds from PubChem. RESULTS: Evaluation with independent, external test and validation sets indicated that cytotoxicity Bayesian models constructed with the ECFP_6 descriptor were more accurate than those that used FCFP_6 fingerprints. The best cytotoxicity Bayesian model displayed predictive power in external evaluations, according to conventional and chance-corrected statistics, as well as enrichment factors. CONCLUSIONS: The results from external tests demonstrate that our novel cytotoxicity Bayesian model displays sufficient predictive power to help guide translational research. To assist the chemical tool and drug discovery communities, our curated training set is being distributed as part of the Supplementary Material. Graphical Abstract Naive Bayesian models have been trained with publically available data and offer a useful tool for chemical biology and drug discovery to select for small molecules with a high probability of exhibiting acceptably low Vero cell cytotoxicity.


Asunto(s)
Teorema de Bayes , Modelos Biológicos , Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad/métodos , Animales , Chlorocebus aethiops , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Almacenamiento y Recuperación de la Información , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Células Vero
8.
Biochem Biophys Res Commun ; 492(4): 643-651, 2017 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-28341122

RESUMEN

America is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV. The ZIKV NS3 helicase (NS3h) protein is a promising target for drug discovery due to its essential role in viral genome replication. NS3h unwinds the viral RNA to enable the replication of the viral genome by the NS5 protein. NS3h contains two important binding sites: the NTPase binding site and the RNA binding site. Here, we used molecular dynamics (MD) simulations to study the molecular behavior of ZIKV NS3h in the presence and absence of ssRNA and the potential implications for NS3h activity and inhibition. Although there is conformational variability and poor electron densities of the RNA binding loop in various apo flaviviruses NS3h crystallographic structures, the MD trajectories of NS3h-ssRNA demonstrated that the RNA binding loop becomes more stable when NS3h is occupied by RNA. Our results suggest that the presence of RNA generates important interactions with the RNA binding loop, and these interactions stabilize the loop sufficiently that it remains in a closed conformation. This closed conformation likely keeps the ssRNA bound to the protein for a sufficient duration to enable the unwinding/replication activities of NS3h to occur. In addition, conformational changes of this RNA binding loop can change the nature and location of the optimal ligand binding site, according to ligand binding site prediction results. These are important findings to help guide the design and discovery of new inhibitors of NS3h as promising compounds to treat the ZIKV infection.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , ARN Viral/química , ARN Viral/ultraestructura , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Virus Zika/enzimología , Sitios de Unión , Activación Enzimática , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN Helicasas/química , ARN Helicasas/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/ultraestructura
10.
Pharm Res ; 33(2): 433-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26415647

RESUMEN

PURPOSE: Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. METHODS: Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). RESULTS: "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. CONCLUSIONS: Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.


Asunto(s)
Descubrimiento de Drogas/métodos , Aprendizaje Automático , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Teorema de Bayes , Bases de Datos Farmacéuticas , Ratones , Modelos Biológicos , Preparaciones Farmacéuticas/química , Análisis de Componente Principal , Bibliotecas de Moléculas Pequeñas/química
11.
J Chem Inf Model ; 56(7): 1332-43, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27335215

RESUMEN

The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtb in vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitro Mtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivo Mtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a mobile app.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Mycobacterium tuberculosis/fisiología , Tuberculosis/tratamiento farmacológico , Animales , Teorema de Bayes , Modelos Animales de Enfermedad , Ratones
12.
J Chem Inf Model ; 55(3): 645-59, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25636146

RESUMEN

Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections and is used in combination therapy to treat active tuberculosis (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase-peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria (GO FAM) project were designed to discover new scaffolds that display base-stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the 16 soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 µM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and thus help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Bacteriana , Isoniazida/farmacología , Cinética , Pruebas de Sensibilidad Microbiana
13.
J Comput Aided Mol Des ; 28(4): 429-441, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24493410

RESUMEN

To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational structure-based drug discovery tools and strategies that are being developed to advance the goals of the newly created, multi-institution, NIH-funded center called the "HIV Interaction and Viral Evolution Center".


Asunto(s)
Diseño de Fármacos , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH/enzimología , Simulación del Acoplamiento Molecular , Sitio Alostérico , Sitios de Unión , Diseño Asistido por Computadora , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/virología , Integrasa de VIH/química , Humanos , Ligandos
14.
J Comput Aided Mol Des ; 28(4): 327-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24595873

RESUMEN

Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components--a small "virtual screening" challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH/enzimología , Dominio Catalítico , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/virología , Integrasa de VIH/química , Inhibidores de Integrasa VIH/química , Humanos , Modelos Moleculares , Modelos Estadísticos , Unión Proteica
15.
J Comput Aided Mol Des ; 28(4): 475-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24504704

RESUMEN

As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.


Asunto(s)
Integrasa de VIH/metabolismo , VIH/enzimología , Inhibidores de Integrasa/química , Inhibidores de Integrasa/farmacología , Simulación del Acoplamiento Molecular , Termodinámica , Diseño Asistido por Computadora , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/virología , Integrasa de VIH/química , Humanos , Ligandos , Unión Proteica , Programas Informáticos
16.
ACS Infect Dis ; 8(7): 1280-1290, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748568

RESUMEN

Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.


Asunto(s)
Aprendizaje Automático , Teorema de Bayes , Plásmidos
17.
J Med Chem ; 65(15): 10251-10284, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880755

RESUMEN

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.


Asunto(s)
Neoplasias , Proteínas Tirosina Quinasas , Línea Celular Tumoral , Proliferación Celular , Humanos , Proteínas de la Membrana , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas
18.
J Med Chem ; 65(19): 13198-13215, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36126059

RESUMEN

DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Neoplasias Ováricas , Animales , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Femenino , Humanos , Ratones
19.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 6): 540-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21636894

RESUMEN

A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Šresolution, respectively. The structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC(50) values in the nanomolar range.


Asunto(s)
Ácido Aspártico Endopeptidasas/química , Proteasa del VIH/química , VIH/enzimología , Virus de la Inmunodeficiencia Felina/enzimología , Ácido Aspártico Endopeptidasas/genética , Cristalografía por Rayos X , Proteasa del VIH/genética , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Especificidad por Sustrato
20.
ACS Infect Dis ; 7(8): 2508-2521, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34342426

RESUMEN

We present the application of Bayesian modeling to identify chemical tools and/or drug discovery entities pertinent to drug-resistant Staphylococcus aureus infections. The quinoline JSF-3151 was predicted by modeling and then empirically demonstrated to be active against in vitro cultured clinical methicillin- and vancomycin-resistant strains while also exhibiting efficacy in a mouse peritonitis model of methicillin-resistant S. aureus infection. We highlight the utility of an intrabacterial drug metabolism (IBDM) approach to probe the mechanism by which JSF-3151 is transformed within the bacteria. We also identify and then validate two mechanisms of resistance in S. aureus: one mechanism involves increased expression of a lipocalin protein, and the other arises from the loss of function of an azoreductase. The computational and experimental approaches, discovery of an antibacterial agent, and elucidated resistance mechanisms collectively hold promise to advance our understanding of therapeutic regimens for drug-resistant S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Preparaciones Farmacéuticas , Infecciones Estafilocócicas , Animales , Teorema de Bayes , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA