Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743812

RESUMEN

BACKGROUND: The cell envelope of Staphylococcus aureus contains two major secondary cell wall glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Both the CP and the WTA are attached to the cell wall and play distinct roles in S. aureus colonization, pathogenesis, and bacterial evasion of host immune defenses. OBJECTIVE: We aimed to investigate whether CP interferes with WTA-mediated properties. METHODS: Strains with natural heterogeneous expression of CP, strains with homogeneous high CP expression and CP-deficient strains were compared to WTA deficient controls regarding WTA dependent phage binding, cell adhesion, IgG deposition, and virulence in vivo. RESULTS: WTA-mediated phage adsorption, specific antibody deposition and cell adhesion were negatively correlated with CP expression. WTA, but not CP, enhanced the bacterial burden in a mouse abscess model, while CP overexpression resulted in intermediate virulence in vivo. CONCLUSIONS: CP protects the bacteria from WTA-dependent opsonization and phage binding. This protection comes at the cost of diminished adhesion to host cells. The highly complex regulation and mostly heterogeneous expression of CP has probably evolved to ensure the survival and optimal physiological adaptation of the bacterial population as a whole.

2.
Nature ; 563(7733): 705-709, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464342

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of difficult-to-treat, often fatal infections in humans1,2. Most humans have antibodies against S. aureus, but these are highly variable and often not protective in immunocompromised patients3. Previous vaccine development programs have not been successful4. A large percentage of human antibodies against S. aureus target wall teichoic acid (WTA), a ribitol-phosphate (RboP) surface polymer modified with N-acetylglucosamine (GlcNAc)5,6. It is currently unknown whether the immune evasion capacities of MRSA are due to variation of dominant surface epitopes such as those associated with WTA. Here we show that a considerable proportion of the prominent healthcare-associated and livestock-associated MRSA clones CC5 and CC398, respectively, contain prophages that encode an alternative WTA glycosyltransferase. This enzyme, TarP, transfers GlcNAc to a different hydroxyl group of the WTA RboP than the standard enzyme TarS7, with important consequences for immune recognition. TarP-glycosylated WTA elicits 7.5-40-fold lower levels of immunoglobulin G in mice than TarS-modified WTA. Consistent with this, human sera contained only low levels of antibodies against TarP-modified WTA. Notably, mice immunized with TarS-modified WTA were not protected against infection with tarP-expressing MRSA, indicating that TarP is crucial for the capacity of S. aureus to evade host defences. High-resolution structural analyses of TarP bound to WTA components and uridine diphosphate GlcNAc (UDP-GlcNAc) explain the mechanism of altered RboP glycosylation and form a template for targeted inhibition of TarP. Our study reveals an immune evasion strategy of S. aureus based on averting the immunogenicity of its dominant glycoantigen WTA. These results will help with the identification of invariant S. aureus vaccine antigens and may enable the development of TarP inhibitors as a new strategy for rendering MRSA susceptible to human host defences.


Asunto(s)
Pared Celular/química , Pared Celular/inmunología , Evasión Inmune , Staphylococcus aureus Resistente a Meticilina/citología , Staphylococcus aureus Resistente a Meticilina/inmunología , Pentosafosfatos/inmunología , Ácidos Teicoicos/inmunología , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Adulto , Animales , Bacteriófagos/patogenicidad , Femenino , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/química , Ratones , Persona de Mediana Edad , Modelos Moleculares , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Uridina Difosfato/química , Uridina Difosfato/metabolismo , Adulto Joven
3.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273203

RESUMEN

Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this study, we investigated the changes that occur in S. aureus when it suffers from CO2/bicarbonate deficiency. Electron microscopy revealed that ΔmpsABC has a twofold thicker cell wall thickness compared to the parent strain. The mutant was also substantially inert to cell lysis induced by lysostaphin and the non-ionic surfactant Triton X-100. Mass spectrometry analysis of muropeptides revealed the incorporation of alanine into the pentaglycine interpeptide bridge, which explains the mutant's lysostaphin resistance. Flow cytometry analysis of wall teichoic acid (WTA) glycosylation patterns revealed a significantly lower α-glycosylated and higher ß-glycosylated WTA, explaining the mutant's increased resistance towards Triton X-100. Comparative transcriptome analysis showed altered gene expression profiles. Autolysin-encoding genes such as sceD, a lytic transglycosylase encoding gene, were upregulated, like in vancomycin-intermediate S. aureus mutants (VISA). Genes related to cell wall-anchored proteins, secreted proteins, transporters, and toxins were downregulated. Overall, we demonstrate that bicarbonate deficiency is a stress response that causes changes in cell wall composition and global gene expression resulting in increased resilience to cell wall lytic enzymes and detergents.


Asunto(s)
Bicarbonatos , Pared Celular , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Bicarbonatos/metabolismo , Pared Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estrés Fisiológico , Regulación Bacteriana de la Expresión Génica , Dióxido de Carbono/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125595

RESUMEN

Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John's wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved activity and compatibility. Here, we studied the antimicrobial activity of two synthetic PPAP-derivatives, the water-insoluble PPAP23 and the water-soluble sodium salt PPAP53. In vitro, both compounds exhibited good activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Both compounds had no adverse effects on Galleria mellonella wax moth larvae. However, they were unable to protect the larvae from infection with S. aureus because components of the larval coelom neutralized the antimicrobial activity; a similar effect was also seen with serum albumin. In silico docking studies with PPAP53 revealed that it binds to the F1 pocket of human serum albumin with a binding energy of -7.5 kcal/mol. In an infection model of septic arthritis, PPAP23 decreased the formation of abscesses and S. aureus load in kidneys; in a mouse skin abscess model, topical treatment with PPAP53 reduced S. aureus counts. Both PPAPs were active against anaerobic Gram-positive gut bacteria such as neurotransmitter-producing Clostridium, Enterococcus or Ruminococcus species. Based on these results, we foresee possible applications in the decolonization of pathogens.


Asunto(s)
Cetonas , Staphylococcus aureus Resistente a Meticilina , Compuestos de Espiro , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Enterococcus faecium/efectos de los fármacos , Cetonas/química , Cetonas/farmacología , Larva/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/efectos de los fármacos , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico
5.
Nature ; 535(7613): 511-6, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27466123

RESUMEN

The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Cíclicos/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus lugdunensis/metabolismo , Simbiosis , Tiazolidinas/metabolismo , Animales , Antibacterianos/biosíntesis , Portador Sano/microbiología , Modelos Animales de Enfermedad , Farmacorresistencia Microbiana , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microbiota/fisiología , Nariz/microbiología , Sigmodontinae , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/patogenicidad
6.
J Biol Chem ; 295(12): 4024-4034, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32047114

RESUMEN

The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers linked to either peptidoglycan (wall teichoic acids; WTA) or to membrane glycolipids (lipoteichoic acids; LTA). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers yet are synthesized through different pathways and have distinct but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exolytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, which lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not degrade unsubstituted LTA unless it was partially precleaved, allowing access of GlpQ to the other end of the polymer, which, in the intact molecule, is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have been suggested previously on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers: WTA is made of sn-glycerol-3-phosphate, and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTA and replaces it with phosphate-free teichuronic acids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Ácidos Teicoicos/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Glicosilación , Lipopolisacáridos/biosíntesis , Hidrolasas Diéster Fosfóricas/genética , Polímeros/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Compuestos de Sodio/química , Estereoisomerismo , Especificidad por Sustrato , Ácidos Teicoicos/biosíntesis
8.
J Infect Dis ; 221(4): 668-678, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31573600

RESUMEN

BACKGROUND: Formyl-peptide receptors (FPRs) are important pattern recognition receptors that sense specific bacterial peptides. Formyl-peptide receptors are highly expressed on neutrophils and monocytes, and their activation promotes the migration of phagocytes to sites of infection. It is currently unknown whether FPRs may also influence subsequent processes such as bacterial phagocytosis and killing. Staphylococcus aureus, especially highly pathogenic community-acquired methicillin-resistant S aureus strains, release high amounts of FPR2 ligands, the phenol-soluble modulins. METHODS: We demonstrate that FPR activation leads to upregulation of complement receptors 1 and 3 as well as FCγ receptor I on neutrophils and, consequently, increased opsonic phagocytosis of S aureus and other pathogens. RESULTS: Increased phagocytosis promotes killing of S aureus and interleukin-8 release by neutrophils. CONCLUSIONS: We show here for the first time that FPRs govern opsonic phagocytosis. Manipulation of FPR2 activation could open new therapeutic opportunities against bacterial pathogens.


Asunto(s)
Infecciones Comunitarias Adquiridas/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Fagocitosis/efectos de los fármacos , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Infecciones Estafilocócicas/metabolismo , Donantes de Sangre , Células Cultivadas , Infecciones Comunitarias Adquiridas/microbiología , Humanos , Interleucina-8/metabolismo , Antígeno de Macrófago-1/metabolismo , Neutrófilos/metabolismo , Receptores de Complemento 3b/metabolismo , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de IgG/metabolismo , Receptores de Lipoxina/antagonistas & inhibidores , Receptores de Reconocimiento de Patrones/metabolismo , Infecciones Estafilocócicas/microbiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-33106269

RESUMEN

Lugdunin is the first reported nonribosomally synthesized antibiotic from human microbiomes. Its production by the commensal Staphylococcus lugdunensis eliminates the pathogen Staphylococcus aureus from human nasal microbiomes. The cycloheptapeptide lugdunin is the founding member of the new class of fibupeptide antibiotics, which have a novel mode of action and represent promising new antimicrobial agents. How S. lugdunensis releases and achieves producer self-resistance to lugdunin has remained unknown. We report that two ABC transporters encoded upstream of the lugdunin-biosynthetic operon have distinct yet overlapping roles in lugdunin secretion and self-resistance. While deletion of the lugEF transporter genes abrogated most of the lugdunin secretion, the lugGH transporter genes had a dominant role in resistance. Yet all four genes were required for full-level lugdunin resistance. The small accessory putative membrane protein LugI further contributed to lugdunin release and resistance levels conferred by the ABC transporters. Whereas LugIEFGH also conferred resistance to lugdunin congeners with inverse structures or with amino acid exchange at position 6, they neither affected the susceptibility to a lugdunin variant with an exchange at position 2 nor to other cyclic peptide antimicrobials such as daptomycin or gramicidin S. The obvious selectivity of the resistance mechanism raises hopes that it will not confer cross-resistance to other antimicrobials or to optimized lugdunin derivatives to be used for the prevention and treatment of S. aureus infections.


Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Staphylococcus lugdunensis , Transportadoras de Casetes de Unión a ATP/genética , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Tiazolidinas
10.
Cell Microbiol ; 21(10): e13072, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31219660

RESUMEN

Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern-recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved ß-1,4-linked N-acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase-negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly-glycerolphosphate with α-O-N-acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose-type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN- and GalNAc-dependent manner but did not interact with different tagN-positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc-transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte-derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.


Asunto(s)
Pared Celular/metabolismo , Células Dendríticas/inmunología , Glicosiltransferasas/metabolismo , Lectinas Tipo C/inmunología , Staphylococcus aureus/enzimología , Ácidos Teicoicos/química , Acetilgalactosamina/análogos & derivados , Acetilgalactosamina/química , Citocinas/metabolismo , Dermis/inmunología , Dermis/microbiología , Glicerofosfatos/química , Glicosiltransferasas/genética , Interacciones Huésped-Patógeno , Humanos , Macrófagos/inmunología , Mutación , Staphylococcus aureus/química , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Staphylococcus lugdunensis/química , Staphylococcus lugdunensis/enzimología
12.
J Biol Chem ; 293(38): 14916-14924, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30068554

RESUMEN

Staphylococcus aureus is part of the human nasal and skin microbiomes along with other bacterial commensals and opportunistic pathogens. Nutrients are scarce in these habitats, demanding effective nutrient acquisition and competition strategies. How S. aureus copes with phosphate limitation is still unknown. Wall teichoic acid (WTA), a polyol-phosphate polymer, could serve as a phosphate source, but whether S. aureus can utilize it during phosphate starvation remains unknown. S. aureus secretes a glycerophosphodiesterase, GlpQ, that cleaves a broad variety of glycerol-3-phosphate (GroP) headgroups of deacylated phospholipids, providing this bacterium with GroP as a carbon and phosphate source. Here we demonstrate that GlpQ can also use glycerophosphoglycerol derived from GroP WTA from coagulase-negative Staphylococcus lugdunensis, Staphylococcus capitis, and Staphylococcus epidermidis, which share the nasal and skin habitats with S. aureus Therefore, S. aureus GlpQ is the first reported WTA-hydrolyzing enzyme, or teichoicase, from Staphylococcus Activity assays revealed that unmodified WTA is the preferred GlpQ substrate, and the results from MS analysis suggested that GlpQ uses an exolytic cleavage mechanism. Importantly, GlpQ did not hydrolyze the ribitol-5-phosphate WTA polymers of S. aureus, underscoring its role in interspecies competition rather than in S. aureus cell wall homeostasis or WTA recycling. glpQ expression was strongly up-regulated under phosphate limitation, and GlpQ allowed S. aureus to grow in the presence of GroP WTA as the sole phosphate source. Our study reveals a novel and unprecedented strategy of S. aureus for acquiring phosphate from bacterial competitors under the phosphate-limiting conditions in the nasal or skin environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Glicosilación , Espectrometría de Masas , Especificidad por Sustrato
13.
Infect Immun ; 87(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548327

RESUMEN

Upon microbial infection, host immune cells recognize bacterial cell envelope components through cognate receptors. Although bacterial cell envelope components function as innate immune molecules, the role of the physical state of the bacterial cell envelope (i.e., particulate versus soluble) in host immune activation has not been clearly defined. Here, using two different forms of the staphylococcal cell envelope of Staphylococcus aureus RN4220 and USA300 LAC strains, we provide biochemical and immunological evidence that the particulate state is required for the effective activation of host innate immune responses. In a murine model of peritoneal infection, the particulate form of the staphylococcal cell envelope (PCE) induced the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and CC chemokine ligand 2 (CCL2), the chemotactic cytokines for neutrophils and monocytes, respectively, resulting in a strong influx of the phagocytes into the peritoneal cavity. In contrast, compared with PCE, the soluble form of cell envelope (SCE), which was derived from PCE by treatment with cell wall-hydrolyzing enzymes, showed minimal activity. PCE also induced the secretion of calprotectin (myeloid-related protein 8/14 [MRP8/14] complex), a phagocyte-derived antimicrobial protein, into the peritoneal cavity at a much higher level than did SCE. The injected PCE particles were phagocytosed by the infiltrated neutrophils and monocytes and then delivered to mediastinal draining lymph nodes. More importantly, intraperitoneally (i.p.) injected PCE efficiently protected mice from S. aureus infection, which was abolished by the depletion of either monocytes/macrophages or neutrophils. This study demonstrated that the physical state of bacterial cells is a critical factor for efficient host immune activation and the protection of hosts from staphylococcal infections.


Asunto(s)
Pared Celular/inmunología , Monocitos/inmunología , Neutrófilos/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Femenino , Inmunidad Innata/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/inmunología , Infecciones Estafilocócicas/microbiología
14.
PLoS Pathog ; 13(1): e1006110, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28081265

RESUMEN

Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections.


Asunto(s)
Antibacterianos/farmacología , Fibrinolisina/metabolismo , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrinolisina/genética , Glicoproteínas , Humanos , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Factores de Virulencia
15.
Int J Med Microbiol ; 309(5): 359-363, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31182276

RESUMEN

Daptomycin has become an important antibiotic for the treatment of serious Methicillin-Resistant Staphylococcus aureus (MRSA) infections. Unlike other approved antibiotics, its mode of action is still under active investigation, as well as the molecular basis of daptomycin resistance, which emerges in some cases during daptomycin treatment. Small nucleotide polymorphisms (SNPs) in the Multiple Peptide Resistance Factor (MprF) appear to play a major role in the resistance mechanism. Until recently, the impact of the SNPs on MprF activity has remained unclear, which is due to conflicting reports on resistance-associated phenotypes and an incomplete understanding of the mode of action of MprF. However, recent structural insights into MprF and studies with isogenic mutants have now led to a new model of MprF-mediated daptomycin resistance, which harmonizes most of the observed phenotypes and provides a basis for challenging biochemical investigations.


Asunto(s)
Aminoaciltransferasas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Daptomicina/farmacología , Farmacorresistencia Bacteriana/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Polimorfismo de Nucleótido Simple , Infecciones Estafilocócicas/tratamiento farmacológico
16.
FASEB J ; 32(1): 26-36, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855276

RESUMEN

Leukocytes express formyl-peptide receptors (FPRs), which sense microbe-associated molecular pattern (MAMP) molecules, leading to leukocyte chemotaxis and activation. We recently demonstrated that phenol-soluble modulin (PSM) peptides from highly pathogenic Staphylococcus aureus are efficient ligands for the human FPR2. How PSM detection by FPR2 impacts on the course of S. aureus infections has remained unknown. We characterized the specificity of mouse FPR2 (mFpr2) using a receptor-transfected cell line, homeobox b8 (Hoxb8), and primary neutrophils isolated from wild-type (WT) or mFpr2-/- mice. The influx of leukocytes into the peritoneum of WT and mFpr2-/- mice was analyzed. We demonstrate that mFpr2 is specifically activated by PSMs in mice, and they represent the first secreted pathogen-derived ligands for the mFpr2. Intraperitoneal infection with S. aureus led to lower numbers of immigrated leukocytes in mFpr2-/- compared with WT mice at 3 h after infection, and this difference was not observed when mice were infected with an S. aureus PSM mutant. Our data support the hypothesis that the mFpr2 is the functional homolog of the human FPR2 and that a mouse infection model represents a suitable model for analyzing the role of PSMs during infection. PSM recognition by mFpr2 shapes leukocyte influx in local infections, the typical infections caused by S. aureus-Weiss, E., Hanzelmann, D., Fehlhaber, B., Klos, A., von Loewenich, F. D., Liese, J., Peschel, A., Kretschmer, D. Formyl-peptide receptor 2 governs leukocyte influx in local Staphylococcus aureus infections.


Asunto(s)
Leucocitos/inmunología , Receptores de Formil Péptido/inmunología , Receptores de Lipoxina/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Señalización del Calcio/inmunología , Degranulación de la Célula/inmunología , Línea Celular , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Genes Bacterianos , Proteínas de Homeodominio/inmunología , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neutrófilos/inmunología , Receptores de Formil Péptido/deficiencia , Receptores de Formil Péptido/genética , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología
17.
PLoS Genet ; 12(8): e1006246, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27575058

RESUMEN

Staphylococcus lugdunensis is a coagulase negative bacterial pathogen that is particularly associated with severe cases of infectious endocarditis. Unique amongst the coagulase-negative staphylococci, S. lugdunensis harbors an iron regulated surface determinant locus (isd). This locus facilitates the acquisition of heme as a source of nutrient iron during infection and allows iron limitation caused by "nutritional immunity" to be overcome. The isd locus is duplicated in S. lugdunensis HKU09-01 and we show here that the duplication is intrinsically unstable and undergoes accordion-like amplification and segregation leading to extensive isd copy number variation. Amplification of the locus increased the level of expression of Isd proteins and improved binding of hemoglobin to the cell surface of S. lugdunensis. Furthermore, Isd overexpression provided an advantage when strains were competing for a limited amount of hemoglobin as the sole source of iron. Gene duplications and amplifications (GDA) are events of fundamental importance for bacterial evolution and are frequently associated with antibiotic resistance in many species. As such, GDAs are regarded as evolutionary adaptions to novel selective pressures in hostile environments pointing towards a special importance of isd for S. lugdunensis. For the first time we show an example of a GDA that involves a virulence factor of a Gram-positive pathogen and link the GDA directly to a competitive advantage when the bacteria were struggling with selective pressures mimicking "nutritional immunity".


Asunto(s)
Endocarditis Bacteriana/microbiología , Hierro/metabolismo , Infecciones Estafilocócicas/metabolismo , Staphylococcus lugdunensis/metabolismo , Variaciones en el Número de Copia de ADN/genética , Endocarditis Bacteriana/genética , Duplicación de Gen , Sitios Genéticos/genética , Hemo/genética , Hemo/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/patología , Staphylococcus lugdunensis/patogenicidad , Propiedades de Superficie
18.
Angew Chem Int Ed Engl ; 58(27): 9234-9238, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31059155

RESUMEN

Lugdunin, a novel thiazolidine cyclopeptide, exhibits micromolar activity against methicillin-resistant Staphylococcus aureus (MRSA). For structure-activity relationship (SAR) studies, synthetic analogues obtained from alanine and stereo scanning as well as peptides with modified thiazolidine rings were tested for antimicrobial activity. The thiazolidine ring and the alternating d- and l-amino acid backbone are essential. Notably, the non-natural enantiomer displays equal activity, thus indicating the absence of a chiral target. The antibacterial activity strongly correlates with dissipation of the membrane potential in S. aureus. Lugdunin equalizes pH gradients in artificial membrane vesicles, thereby maintaining membrane integrity, which demonstrates that proton translocation is the mode of action (MoA). The incorporation of extra tryptophan or propargyl moieties further expands the diversity of this class of thiazolidine cyclopeptides.


Asunto(s)
Antiinfecciosos/síntesis química , Péptidos Cíclicos/química , Tiazolidinas/química , Alanina/química , Secuencia de Aminoácidos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Protones , Estereoisomerismo , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/farmacología
19.
Mol Microbiol ; 103(2): 229-241, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27726204

RESUMEN

The facultative pathogen Staphylococcus aureus colonizes the human anterior nares and causes infections of various organ systems. Which carbon, energy, and phosphate sources can be utilized by S. aureus in nutrient-poor habitats has remained largely unknown. We describe that S. aureus secretes a glycerophosphodiesterase (glycerophosphodiester phosphodiesterase, EC 3.1.4.46), GlpQ, degrading the glycerophosphodiester (GPD) head groups of phospholipids such as human phosphatidylcholine (GroPC). Deletion of glpQ completely abolished the GroPC-degrading activity in S. aureus culture supernatants. GroPC has been detected in human tissues and body fluids probably as a result of phospholipid remodelling and degradation. Notably, GroPC promoted S. aureus growth under carbon- and phosphate-limiting conditions in a GlpQ-dependent manner indicating that GlpQ permits S. aureus to utilize GPD-derived glycerol-3-phosphate as a carbon and phosphate sources. Thus, S. aureus can use a broader spectrum of nutrients than previously thought which underscores its capacity to adapt to the highly variable and nutrient-poor surroundings.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerofosfatos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
20.
PLoS Pathog ; 12(8): e1005812, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27490492

RESUMEN

The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.


Asunto(s)
Antibiosis/fisiología , Bacteriocinas/biosíntesis , Nariz/microbiología , Staphylococcus/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Microbiota , Reacción en Cadena de la Polimerasa , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA