Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693356

RESUMEN

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Francisella/inmunología , GTP Fosfohidrolasas/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Linfocitos B/inmunología , Caspasas/metabolismo , Caspasas Iniciadoras , Citosol/inmunología , Citosol/microbiología , GTP Fosfohidrolasas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Celular , Inmunidad Innata , Inflamasomas/metabolismo , Ligandos , Ratones , Ratones Mutantes , Células Mieloides/inmunología , Linfocitos T/inmunología
2.
PLoS Pathog ; 16(3): e1008364, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150572

RESUMEN

Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia/inmunología , Proteínas de Unión al GTP/inmunología , Células Gigantes/inmunología , Macrófagos/inmunología , Enfermedades Nasales/inmunología , Prenilación de Proteína/inmunología , Animales , Infecciones por Burkholderia/genética , Infecciones por Burkholderia/patología , Fusión Celular , Proteínas de Unión al GTP/genética , Células Gigantes/microbiología , Células Gigantes/patología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Enfermedades Nasales/genética , Enfermedades Nasales/microbiología , Enfermedades Nasales/patología
3.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27220849

RESUMEN

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Asunto(s)
Núcleo Celular/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Proteínas Represoras/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos , Ubiquitinación , Proteína Gli3 con Dedos de Zinc
4.
Exp Cell Res ; 379(1): 55-64, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922922

RESUMEN

Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.


Asunto(s)
Metabolismo Energético/fisiología , Orgánulos/metabolismo , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Lisosomas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
5.
Dev Biol ; 425(2): 101-108, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28365243

RESUMEN

The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously.


Asunto(s)
Barrera Hematoencefálica/fisiología , Neovascularización Fisiológica , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Células Endoteliales/metabolismo , Genes Reporteros , Pruebas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Regiones Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Pez Cebra/genética
7.
Nat Genet ; 38(5): 583-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16642022

RESUMEN

An appropriate beta cell mass is pivotal for the maintenance of glucose homeostasis. Both insulin and IGF-1 are important in regulation of beta cell growth and function (reviewed in ref. 2). To define the roles of these hormones directly, we created a mouse model lacking functional receptors for both insulin and IGF-1 only in beta cells (betaDKO), as the hormones have overlapping mechanisms of action and activate common downstream proteins. Notably, betaDKO mice were born with a normal complement of islet cells, but 3 weeks after birth, they developed diabetes, in contrast to mild phenotypes observed in single mutants. Normoglycemic 2-week-old betaDKO mice manifest reduced beta cell mass, reduced expression of phosphorylated Akt and the transcription factor MafA, increased apoptosis in islets and severely compromised beta cell function. Analyses of compound knockouts showed a dominant role for insulin signaling in regulating beta cell mass. Together, these data provide compelling genetic evidence that insulin and IGF-I-dependent pathways are not critical for development of beta cells but that a loss of action of these hormones in beta cells leads to diabetes. We propose that therapeutic improvement of insulin and IGF-I signaling in beta cells might protect against type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Factor I del Crecimiento Similar a la Insulina/fisiología , Insulina/fisiología , Islotes Pancreáticos/fisiopatología , Animales , Diabetes Mellitus Experimental/etiología , Humanos , Espectrometría de Masas , Ratones , Ratones Noqueados , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/fisiología , Receptor de Insulina/genética , Receptor de Insulina/fisiología
8.
Biochemistry ; 49(31): 6505-7, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20604537

RESUMEN

Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, stimulates energy production from glycogen in the cascade activation of glycogenolysis. Its large homologous alpha and beta subunits regulate the activity of the catalytic gamma subunit and account for 81% of PhK's mass. Both subunits are thought to be multidomain structures, and recent predictions based on their sequences suggest the presence of potentially functional glucoamylase (GH15)-like domains near their amino termini. We present the first experimental evidence of such a domain in PhK by demonstrating that the glucoamylase inhibitor acarbose binds PhK, perturbs its structure, and stimulates its kinase activity.


Asunto(s)
Acarbosa/farmacología , Glucano 1,4-alfa-Glucosidasa/antagonistas & inhibidores , Fosforilasa Quinasa/química , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos , Humanos , Hipoglucemiantes , Fosforilasa Quinasa/efectos de los fármacos , Unión Proteica , Conformación Proteica
9.
Biochemistry ; 48(42): 10183-91, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19764815

RESUMEN

Understanding the regulatory interactions among the 16 subunits of the (alphabetagammadelta)(4) phosphorylase b kinase (PhK) complex can only be achieved through reconstructing the holoenzyme or its subcomplexes from the individual subunits. In this study, recombinant baculovirus carrying a vector containing a multigene cassette was created to coexpress in insect cells alpha, beta, gamma, and delta subunits corresponding to rabbit skeletal muscle PhK. The hexadecameric recombinant PhK (rPhK) and its corresponding alphagammadelta trimeric subcomplex were purified to homogeneity with proper subunit stoichiometries. The catalytic activity of rPhK at pH 8.2 and its ratio of activities at pH 6.8 versus pH 8.2 were comparable to those of PhK purified from rabbit muscle (RM PhK), as was the hysteresis (autoactivation) in the rate of product formation at pH 6.8. Both the rPhK and alphagammadelta exhibited only a very low Ca(2+)-independent activity and a Ca(2+)-dependent activity similar to that of the native holoenzyme with [Ca(2+)](0.5) of 0.4 microM for the RM PhK, 0.7 microM for the rPhK, and 1.5 microM for the alphagammadelta trimer. The RM PhK, rPhK, and alphagammadelta subcomplex were also all activated through self-phosphorylation. Using cross-linking and limited proteolysis, the alpha-gamma intersubunit contacts previously observed within the intact RM PhK complex were also observed within the recombinant alphagammadelta subcomplex. Our results indicate that both the rPhK and alphagammadelta subcomplex are promising models for future structure-function studies on the regulation of PhK activity through intersubunit contacts, because both retained the regulatory properties of the enzyme purified from skeletal muscle.


Asunto(s)
Músculo Esquelético/enzimología , Fosforilasa Quinasa/metabolismo , Subunidades de Proteína/metabolismo , Animales , Baculoviridae/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Cinética , Modelos Animales , Músculo Esquelético/metabolismo , Fosforilación , Subunidades de Proteína/química , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Bioconjug Chem ; 20(8): 1503-13, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19583240

RESUMEN

Generation 7 (G7) poly(amidoamine) (PAMAM) dendrimers with amine, acetamide, and carboxylate end groups were prepared to investigate polymer/cell membrane interactions in vitro. G7 PAMAM dendrimers were used in this study because higher-generation of dendrimers are more effective in permeabilization of cell plasma membranes and in the formation of nanoscale holes in supported lipid bilayers than smaller, lower-generation dendrimers. Dendrimer-based conjugates were characterized by (1)H NMR, UV/vis spectroscopy, GPC, HPLC, and CE. Positively charged amine-terminated G7 dendrimers (G7-NH(2)) were observed to internalize into KB, Rat2, and C6 cells at a 200 nM concentration. By way of contrast, neither negatively charged G7 carboxylate-terminated dendrimers (G7-COOH) nor neutral acetamide-terminated G7 dendrimers (G7-Ac) associated with the cell plasma membrane or internalized under similar conditions. A series of in vitro experiments employing endocytic markers cholera toxin subunit B (CTB), transferrin, and GM(1)-pyrene were performed to further investigate mechanisms of dendrimer internalization into cells. G7-NH(2) dendrimers colocalized with CTB; however, experiments with C6 cells indicated that internalization of G7-NH(2) was not ganglioside GM(1) dependent. The G7/CTB colocalization was thus ascribed to an artifact of direct interaction between the two species. The presence of GM(1) in the membrane also had no effect upon XTT assays of cell viability or lactate dehydrogenase (LDH) assays of membrane permeability.


Asunto(s)
Membrana Celular/metabolismo , Dendrímeros/metabolismo , Gangliósido G(M1)/metabolismo , Membrana Dobles de Lípidos/metabolismo , Poliaminas/metabolismo , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Gangliósido G(M1)/química , Gangliósido G(M1)/farmacología , Humanos , Células KB , Modelos Biológicos , Estructura Molecular , Poliaminas/química , Ratas , Propiedades de Superficie
11.
J Pineal Res ; 46(3): 286-94, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19196435

RESUMEN

Melatonin is rhythmically synthesized and released by the avian pineal gland and retina during the night, targeting an array of tissues and affecting a variety of physiological and behavioral processes. Among these targets, astrocytes express two melatonin receptor subtypes in vitro, the Mel(1A) and Mel(1C) receptors, which play a role in regulating metabolic activity and calcium homeostasis in these cells. Molecular characterization of chick astrocytes has revealed the expression of orthologs of the mammalian clock genes including clock, cry1, cry2, per2, and per3. To test the hypothesis that pineal melatonin entrains molecular clockworks in downstream cells, we asked whether coculturing astrocytes with pinealocytes or administration of exogenous melatonin cycles would entrain metabolic rhythms of 2-deoxy [14C]-glucose (2DG] uptake and/or clock gene expression in cultured astrocytes. Rhythmic secretion of melatonin from light-entrained pinealocytes in coculture as well as cyclic administration of exogenous melatonin entrained rhythms of 2DG uptake and expression of Gallus per2 (gper2) and/or gper3, but not of gcry1 mRNA. Surprisingly, melatonin also caused a dose-dependent increase in mitotic activity of astrocytes, both in coculture and when administered exogenously. The observation that melatonin stimulates mitotic activity in diencephalic astrocytes suggests a trophic role of the hormone in brain development. The data suggest a dual role for melatonin in avian astrocytes: synchronization of rhythmic processes in these cells and regulation of growth and differentiation. These two processes may or may not be mutually exclusive.


Asunto(s)
Astrocitos/metabolismo , Ritmo Circadiano , Melatonina/metabolismo , Glándula Pineal/metabolismo , Análisis de Varianza , Animales , Proteínas Aviares/metabolismo , Proliferación Celular/efectos de los fármacos , Pollos , Técnicas de Cocultivo , Desoxiglucosa/metabolismo , Flavoproteínas/metabolismo , Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Proteínas Nucleares/metabolismo , Glándula Pineal/citología , Receptores Acoplados a Proteínas G/metabolismo , Análisis de Regresión , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
12.
Gen Comp Endocrinol ; 163(1-2): 109-16, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19523398

RESUMEN

Biological timekeeping in birds is a fundamental feature of avian physiology, behavior and ecology. The physiological basis for avian circadian rhythmicity has pointed to a multi-oscillator system of mutually coupled pacemakers in the pineal gland, eyes and hypothalamic suprachiasmatic nuclei (SCN). In passerines, the role of the pineal gland and its hormone melatonin is particularly important. More recent molecular biological studies have pointed to a highly conserved mechanism involving rhythmic transcription and translation of "clock genes". However, studies attempting to reconcile the physiological role of pineal melatonin with molecular studies have largely failed. Recent work in our laboratory has suggested that melatonin-sensitive physiological processes are only loosely coupled to transcriptional oscillations. Similarly, although the pineal gland has been shown to be critical for overt circadian behaviors, its role in annual cycles of reproductive function appears to be minimal. Recent work on the seasonal control of birdsong, however, suggests that, although the pineal gland does not directly affect gonadal cycles, it is important for seasonal changes in song. Experimental analyses that address these paradoxes will shed light on the roles the biological clock play in birds and in vertebrates in general.


Asunto(s)
Relojes Biológicos/fisiología , Aves/fisiología , Ritmo Circadiano/fisiología , Animales , Relojes Biológicos/genética , Ritmo Circadiano/genética , Melatonina/metabolismo , Melatonina/fisiología , Fotoperiodo , Vocalización Animal/fisiología
13.
Biochem Biophys Rep ; 20: 100656, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31467990

RESUMEN

Naïve pluripotent stem cells (PSCs) display a distinctive phenotype when compared to their "primed" counterparts, including, but not limited to, increased potency to differentiate and more robust mitochondrial respiration. The cultivation and maintenance of naïve PSCs have been notoriously challenging, requiring the use of complex cytokine cocktails. NME7AB is a newly discovered embryonic stem cell growth factor that is expressed exclusively in the first few days of human blastocyst development. It has been previously reported that growing primed induced PSCs (iPSCs) in bFGF-depleted medium with NME7AB as the only added growth factor facilitates the regression of these cells to their naïve state. Here, we confirm this regression by demonstrating the reactivation of mitochondrial function in the induced naïve-like PSCs and increased ATP production in these cells, as compared to that in primed iPSCs.

14.
Nat Microbiol ; 4(2): 316-327, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510167

RESUMEN

Invasive pulmonary aspergillosis causes substantial mortality in immunocompromised individuals. Recognition of Aspergillus fumigatus by the host immune system leads to activation of the inflammasome, which provides protection against infection. However, regulation of inflammasome activation at the molecular level is poorly understood. Here, we describe two distinct pathways that coordinately control inflammasome activation during A. fumigatus infection. The C-type lectin receptor pathway activates both MAPK and NF-κB signalling, which leads to induction of downstream mediators, such as the transcription factor IRF1, and also primes the inflammasomes. Toll-like receptor signalling through the adaptor molecules MyD88 and TRIF in turn mediates efficient activation of IRF1, which induces IRGB10 expression. IRGB10 targets the fungal cell wall, and the antifungal activity of IRGB10 causes hyphae damage, modifies the A. fumigatus surface and inhibits fungal growth. We also demonstrate that one of the major fungal pathogen-associated molecular patterns, ß-glucan, directly triggers inflammasome assembly. Thus, the concerted activation of both Toll-like receptors and C-type lectin receptors is required for IRF1-mediated IRGB10 regulation, which is a key event governing ligand release and inflammasome activation upon A. fumigatus infection.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , GTP Fosfohidrolasas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Inflamasomas/inmunología , Animales , Aspergilosis/microbiología , Femenino , GTP Fosfohidrolasas/genética , Inmunidad Innata/inmunología , Inflamasomas/metabolismo , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligandos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Mutantes , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , beta-Glucanos/inmunología
15.
Cancer Cell ; 35(1): 140-155.e7, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30595505

RESUMEN

Diffuse intrinsic pontine gliomas (DIPGs) are incurable childhood brainstem tumors with frequent histone H3 K27M mutations and recurrent alterations in PDGFRA and TP53. We generated genetically engineered inducible mice and showed that H3.3 K27M enhanced neural stem cell self-renewal while preserving regional identity. Neonatal induction of H3.3 K27M cooperated with activating platelet-derived growth factor receptor α (PDGFRα) mutant and Trp53 loss to accelerate development of diffuse brainstem gliomas that recapitulated human DIPG gene expression signatures and showed global changes in H3K27 posttranslational modifications, but relatively restricted gene expression changes. Genes upregulated in H3.3 K27M tumors were enriched for those associated with neural development where H3K27me3 loss released the poised state of apparently bivalent promoters, whereas downregulated genes were enriched for those encoding homeodomain transcription factors.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Perfilación de la Expresión Génica/métodos , Glioma/genética , Histonas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Autorrenovación de las Células , Células Cultivadas , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Mutación , Células-Madre Neurales/citología , Rombencéfalo/patología , Análisis de Secuencia de ARN/métodos
16.
Cancer Cell ; 33(5): 937-948.e8, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29681510

RESUMEN

Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL.


Asunto(s)
Mutación de Línea Germinal , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animales , Niño , Femenino , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Linaje , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Análisis de Secuencia de ADN
17.
Nucleic Acids Res ; 33(3): 1132-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15722487

RESUMEN

In this study, we report the biochemical characterization of the deafness-associated mitochondrial 12S rRNA C1494T mutation using 27 cybrid cell lines constructed by transferring mitochondria from 9 lymphoblastoid cell lines derived from a Chinese family into human mitochondrial DNA (mtDNA)-less (rho degrees) cells. Six cybrids derived from two asymptomatic members, and nine cybrids derived from three symptomatic members of the Chinese family carrying the C1494T mutation exhibited approximately 38 and 43% decrease in the rate of mitochondrial protein labeling, respectively, compared with twelve cybrids derived from four Chinese control individuals. These defects are apparently a primary contributor to significant reductions in the rate of overall respiratory capacity or the rate of malate/glutamate promoted respiration, or succinate/G3P-promoted respiration, or TMPD/ascorbate-promoted respiration in mutant cybrid cell lines derived from either symptomatic or asymptomatic individuals. Furthermore, the very significant/nearly identical increase in the ratio of doubling times in DMDM medium in the presence/absence of high concentration of paromomycin was observed in symptomatic or asymptomatic cybrid cell lines carrying the C1494T mutation as compared with the average rate in control cell lines. These observations provide the direct biochemical evidences that the C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and non-syndromic hearing loss. In addition, these data provide the first biochemical evidence that nuclear background plays a critical role in the phenotypic manifestation of non-syndromic hearing loss and aminoglycoside toxicity associated with the C1494T mutation.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Paromomicina/farmacología , Mutación Puntual , ARN Ribosómico/genética , ARN/genética , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular , Respiración de la Célula , Pérdida Auditiva Sensorineural/inducido químicamente , Humanos , Proteínas Mitocondriales/biosíntesis , Paromomicina/toxicidad , ARN Mitocondrial
18.
Nat Commun ; 8(1): 1547, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146910

RESUMEN

The overall survival of patients with acute myeloid leukemia (AML) is poor and identification of new disease-related therapeutic targets remains a major goal for this disease. Here we show that expression of MPP1, a PDZ-domain-containing protein, highly correlated with ABCC4 in AML, is associated with worse overall survival in AML. Murine hematopoietic progenitor cells overexpressing MPP1 acquired the ability to serially replate in methylcellulose culture, a property crucially dependent upon ABCC4. The highly conserved PDZ-binding motif of ABCC4 is required for ABCC4 and MPP1 to form a protein complex, which increased ABCC4 membrane localization and retention, to enhance drug resistance. Specific disruption of this protein complex, either genetically or chemically, removed ABCC4 from the plasma membrane, increased drug sensitivity, and abrogated MPP1-dependent hematopoietic progenitor cell replating in methylcellulose. High-throughput screening identified Antimycin A as a small molecule that disrupted the ABCC4-MPP1 protein complex and reversed drug resistance in AML cell lines and in primary patient AML cells. In all, targeting the ABCC4-MPP1 protein complex can lead to new therapies to improve treatment outcome of AML, a disease where the long-term prognosis is poor.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Resistencia a Antineoplásicos , Leucemia Mieloide/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Enfermedad Aguda , Animales , Antimicina A/farmacología , Proteínas Sanguíneas/genética , Línea Celular Tumoral , Femenino , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Unión Proteica/efectos de los fármacos
19.
Sci Rep ; 6: 30757, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27476972

RESUMEN

A feature in patients with constitutional DNA-mismatch repair deficiency is agenesis of the corpus callosum, the cause of which has not been established. Here we report a previously unrecognized consequence of deficiency in MSH2, a protein known primarily for its function in correcting nucleotide mismatches or insertions and deletions in duplex DNA caused by errors in DNA replication or recombination. We documented that Msh2 deficiency causes dysmyelination of the axonal projections in the corpus callosum. Evoked action potentials in the myelinated corpus callosum projections of Msh2-null mice were smaller than wild-type mice, whereas unmyelinated axons showed no difference. Msh2-null mice were also impaired in locomotive activity and had an abnormal response to heat. These findings reveal a novel pathogenic consequence of MSH2 deficiency, providing a new mechanistic hint to previously recognized neurological disorders in patients with inherited DNA-mismatch repair deficiency.


Asunto(s)
Cuerpo Calloso , Reparación de la Incompatibilidad de ADN , Enfermedades Desmielinizantes , Potenciales Evocados , Locomoción , Proteína 2 Homóloga a MutS/deficiencia , Animales , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Cuerpo Calloso/fisiopatología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Ratones , Ratones Noqueados , Proteína 2 Homóloga a MutS/metabolismo
20.
Lab Chip ; 5(1): 56-63, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15616741

RESUMEN

A microfluidic device that incorporates continuous perfusion and an on-line electrophoresis immunoassay was developed, characterized, and applied to monitoring insulin secretion from single islets of Langerhans. In the device, a cell chamber was perfused with cell culture media or a balanced salt solution at 0.6 to 1.5 microL min(-1). The flow was driven by gas pressure applied off-chip. Perfusate was continuously sampled at 2 nL min(-1) by electroosmosis through a separate channel on the chip. The perfusate was mixed on-line with fluorescein isothiocyanate-labeled insulin (FITC-insulin) and monoclonal anti-insulin antibody and allowed to react for 60 s as the mixture traveled down a 4 cm long reaction channel. The cell chamber and reaction channel were maintained at 37 degrees C. The reaction mixture was injected onto a 1.5 cm separation channel as rapidly as every 6 s, and the free FITC-insulin and the FITC-insulin-antibody complex were separated under an electric field of 500 to 600 V cm(-1). The immunoassay had a detection limit of 0.8 nM and a relative standard deviation of 6% during 2 h of continuous operation with standard solutions. Individual islets were monitored for up to 1 h while perfusing with different concentrations of glucose. The immunoassay allowed quantitative monitoring of classical biphasic and oscillatory insulin secretion with 6 s sampling frequency following step changes in glucose from 3 to 11 mM. The 2.5 cm x 7.6 cm microfluidic system allowed for monitoring islets in a highly automated fashion. The technique should be amenable to studies involving other tissues or cells that release chemicals.


Asunto(s)
Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Técnicas Analíticas Microfluídicas , Animales , Medios de Cultivo , Diseño de Equipo , Inmunoensayo , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA