RESUMEN
Transcription at enhancers is a widespread phenomenon which produces so-called enhancer RNA (eRNA) and occurs in an activity-dependent manner. However, the role of eRNA and its utility in exploring disease-associated changes in enhancer function, and the downstream coding transcripts that they regulate, is not well established. We used transcriptomic and epigenomic data to interrogate the relationship of eRNA transcription to disease status and how genetic variants alter enhancer transcriptional activity in the human brain. We combined RNA-seq data from 537 postmortem brain samples from the CommonMind Consortium with cap analysis of gene expression and enhancer identification, using the assay for transposase-accessible chromatin followed by sequencing (ATACseq). We find 118 differentially transcribed eRNAs in schizophrenia and identify schizophrenia-associated gene/eRNA co-expression modules. Perturbations of a key module are associated with the polygenic risk scores. Furthermore, we identify genetic variants affecting expression of 927 enhancers, which we refer to as enhancer expression quantitative loci or eeQTLs. Enhancer expression patterns are consistent across studies, including differentially expressed eRNAs and eeQTLs. Combining eeQTLs with a genome-wide association study of schizophrenia identifies a genetic variant that alters enhancer function and expression of its target gene, GOLPH3L. Our novel approach to analyzing enhancer transcription is adaptable to other large-scale, non-poly-A depleted, RNA-seq studies.
Asunto(s)
Elementos de Facilitación Genéticos/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto , Estudios de Casos y Controles , Cromatina/genética , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Corteza Prefrontal , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , ARN/genética , ARN no Traducido/genética , Transcripción Genética/genéticaRESUMEN
Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.
Asunto(s)
Empalme Alternativo , Encéfalo , Regulación del Desarrollo de la Expresión Génica , Trastornos Mentales , Humanos , Atlas como Asunto , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/embriología , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Carácter Cuantitativo , Esquizofrenia/genética , Transcriptoma , Trastornos Mentales/genéticaRESUMEN
Genomic regulatory elements active in the developing human brain are notably enriched in genetic risk for neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia, and bipolar disorder. However, prioritizing the specific risk genes and candidate molecular mechanisms underlying these genetic enrichments has been hindered by the lack of a single unified large-scale gene regulatory atlas of human brain development. Here, we uniformly process and systematically characterize gene, isoform, and splicing quantitative trait loci (xQTLs) in 672 fetal brain samples from unique subjects across multiple ancestral populations. We identify 15,752 genes harboring a significant xQTL and map 3,739 eQTLs to a specific cellular context. We observe a striking drop in gene expression and splicing heritability as the human brain develops. Isoform-level regulation, particularly in the second trimester, mediates the greatest proportion of heritability across multiple psychiatric GWAS, compared with eQTLs. Via colocalization and TWAS, we prioritize biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, nearly two-fold that observed in the adult brain. Finally, we build a comprehensive set of developmentally regulated gene and isoform co-expression networks capturing unique genetic enrichments across disorders. Together, this work provides a comprehensive view of genetic regulation across human brain development as well as the stage-and cell type-informed mechanistic underpinnings of neuropsychiatric disorders.
RESUMEN
Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.
Asunto(s)
Trastornos Mentales , Humanos , Trastorno del Espectro Autista/genética , Encéfalo , Genómica , Mosaicismo , Genoma Humano , Trastornos Mentales/genéticaRESUMEN
BACKGROUND: Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. METHODS: Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. RESULTS: An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. CONCLUSIONS: These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Asunto(s)
Quimiocina CCL11/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Factor 2 Relacionado con NF-E2/genética , ARN Interferente Pequeño/genéticaRESUMEN
BACKGROUND: While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized. METHODS: To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. RESULTS: Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work. Differential expression across sex was reproducible across cohorts and identified X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature was also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality from thousands of genes to dozens of modules and elucidate interactions among genes. We found enrichment of coexpression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involved a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. CONCLUSIONS: Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.
Asunto(s)
Esquizofrenia , Transcriptoma , Encéfalo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Esquizofrenia/genética , Caracteres SexualesRESUMEN
Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.
Asunto(s)
Trastorno Bipolar , Esquizofrenia , Adulto , Trastorno Bipolar/genética , Encéfalo , Cromatina , Humanos , Lisina/genética , Esquizofrenia/genéticaRESUMEN
BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.
Asunto(s)
Encéfalo/metabolismo , Estudios de Asociación Genética , Variación Genética , Alelos , Mapeo Cromosómico , Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Genómica/métodos , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Especificidad de Órganos/genética , Polimorfismo de Nucleótido SimpleRESUMEN
The AD Knowledge Portal (adknowledgeportal.org) is a public data repository that shares data and other resources generated by multiple collaborative research programs focused on aging, dementia, and Alzheimer's disease (AD). In this article, we highlight how to use the Portal to discover and download genomic variant and transcriptomic data from the same individuals. First, we show how to use the web interface to browse and search for data of interest using relevant file annotations. We demonstrate how to learn more about the context surrounding the data, including diagnostic criteria and methodological details about sample preparation and data analysis. We present two primary ways to download data-using a web interface, and using a programmatic method that provides access using the command line. Finally, we show how to merge separate sources of metadata into a comprehensive file that contains factors and covariates necessary in downstream analyses. © 2020 The Authors. Basic Protocol 1: Find and download files associated with a selected study Basic Protocol 2: Download files in bulk using the command line client Basic Protocol 3: Working with file annotations and metadata.
Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/terapia , Bases de Datos Genéticas/estadística & datos numéricos , Genómica/métodos , Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Enfermedad de Alzheimer/diagnóstico , Genómica/estadística & datos numéricos , Humanos , InternetRESUMEN
The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
Asunto(s)
Corteza Cerebelosa/metabolismo , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Sitios de Carácter Cuantitativo , Conjuntos de Datos como Asunto , Estudio de Asociación del Genoma Completo , Humanos , Metaanálisis como Asunto , ARN Largo no Codificante/genética , Esquizofrenia/genéticaRESUMEN
Structural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs. Functional impact of copy number variants (CNVs) stems from both the proportion of genic and regulatory content altered and loss-of-function intolerance of the gene. We train a linear model to predict expression effects of rare CNVs and use it to annotate regulatory disruption of CNVs from 14,891 independent genome-sequenced individuals. Pathogenic deletions implicated in neurodevelopmental disorders show significantly more extreme regulatory disruption scores and if rank ordered would be prioritized higher than using frequency or length alone. This work shows the deleteriousness of regulatory SVs, particularly those altering CTCF sites and provides a simple approach for functionally annotating the regulatory consequences of CNVs.
Asunto(s)
Encéfalo/metabolismo , Variaciones en el Número de Copia de ADN , Regulación de la Expresión Génica , Variación Genética , Genoma Humano/genética , Autopsia/métodos , Encéfalo/patología , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Análisis de Secuencia de ARN/métodosRESUMEN
Muscle responses to exercise are complex and include acute responses to exercise-induced injury, as well as longer term adaptive training responses. Using Alaskan sled dogs as an experimental model, changes in muscle gene expression were analyzed to test the hypotheses that important regulatory elements of the muscle's adaptation to exercise could be identified based on the temporal pattern of gene expression. Dogs were randomly assigned to undertake a 160-km run (n=9), or to remain at rest (n=4). Biceps femoris muscle was obtained from the unexercised dogs and two dogs at each of 2, 6, and 12 h after the exercise, and from three dogs 24 h after exercise. RNA was extracted and microarray analysis used to define gene transcriptional changes. The changes in gene expression after exercise occurred in a temporal pattern. Overall, 569, 469, 316, and 223 transcripts were differentially expressed at 2, 6, 12, and 24 h postexercise, respectively, compared with unexercised dogs (based on P
Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Resistencia Física/genética , ARN Mensajero/metabolismo , Deportes de Nieve , Adaptación Fisiológica/genética , Animales , Biomarcadores/sangre , Biopsia , Perros , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de TiempoRESUMEN
Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder. Here we present a public resource of functional genomic data from the dorsolateral prefrontal cortex (DLPFC; Brodmann areas 9 and 46) of 986 individuals from 4 separate brain banks, including 353 diagnosed with schizophrenia and 120 with bipolar disorder. The genomic data include RNA-seq and SNP genotypes on 980 individuals, and ATAC-seq on 269 individuals, of which 264 are a subset of individuals with RNA-seq. We have performed extensive preprocessing and quality control on these data so that the research community can take advantage of this public resource available on the Synapse platform at http://CommonMind.org .
Asunto(s)
Trastorno Bipolar , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Estudios de Cohortes , Epigenómica , Humanos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Esquizofrenia/genética , Esquizofrenia/patología , TranscriptomaRESUMEN
We initiated the systematic profiling of the dorsolateral prefrontal cortex obtained from a subset of autopsied individuals enrolled in the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP), which are jointly designed prospective studies of aging and dementia with detailed, longitudinal cognitive phenotyping during life and a quantitative, structured neuropathologic examination after death. They include over 3,322 subjects. Here, we outline the first generation of data including genome-wide genotypes (n=2,090), whole genome sequencing (n=1,179), DNA methylation (n=740), chromatin immunoprecipitation with sequencing using an anti-Histone 3 Lysine 9 acetylation (H3K9Ac) antibody (n=712), RNA sequencing (n=638), and miRNA profile (n=702). Generation of other omic data including ATACseq, proteomic and metabolomics profiles is ongoing. Thanks to its prospective design and recruitment of older, non-demented individuals, these data can be repurposed to investigate a large number of syndromic and quantitative neuroscience phenotypes. The many subjects that are cognitively non-impaired at death also offer insights into the biology of the human brain in older non-impaired individuals.
Asunto(s)
Enfermedad de Alzheimer , Lóbulo Frontal , Genoma Humano , Proteómica , Anciano , Anciano de 80 o más Años , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Inmunoprecipitación de Cromatina , Metilación de ADN , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Metaboloma , Metabolómica , Análisis de Secuencia de ARNRESUMEN
Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas. Thousands of significant histone quantitative trait loci were identified in neuronal and neuron-depleted samples. Risk variants for schizophrenia, depressive symptoms and neuroticism were significantly over-represented in neuronal H3K4me3 and H3K27ac landscapes. Our Resource, sponsored by PsychENCODE and CommonMind, highlights the critical role of cell-type-specific signatures at regulatory and disease-associated noncoding sequences in the human frontal lobe.
Asunto(s)
Epigénesis Genética/genética , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Histonas/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Enfermedad de Alzheimer/genética , Mapeo Encefálico , Cromatina/genética , Depresión/genética , Depresión/patología , Escolaridad , Predisposición Genética a la Enfermedad/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Giro del Cíngulo/patología , Humanos , Trastornos Neuróticos/genética , Trastornos Neuróticos/patología , Corteza Prefrontal/patología , RiesgoRESUMEN
Alzheimer's disease (AD) affects half the US population over the age of 85 and is universally fatal following an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD. Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous quality control. Both the raw and processed data are publicly available through the Synapse software platform.
Asunto(s)
Enfermedad de Alzheimer , Proteoma , Transcriptoma , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/genética , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , ProteómicaRESUMEN
Most genetic risk for psychiatric disease lies in regulatory regions, implicating pathogenic dysregulation of gene expression and splicing. However, comprehensive assessments of transcriptomic organization in diseased brains are limited. In this work, we integrated genotypes and RNA sequencing in brain samples from 1695 individuals with autism spectrum disorder (ASD), schizophrenia, and bipolar disorder, as well as controls. More than 25% of the transcriptome exhibits differential splicing or expression, with isoform-level changes capturing the largest disease effects and genetic enrichments. Coexpression networks isolate disease-specific neuronal alterations, as well as microglial, astrocyte, and interferon-response modules defining previously unidentified neural-immune mechanisms. We integrated genetic and genomic data to perform a transcriptome-wide association study, prioritizing disease loci likely mediated by cis effects on brain expression. This transcriptome-wide characterization of the molecular pathology across three major psychiatric disorders provides a comprehensive resource for mechanistic insight and therapeutic development.
Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Empalme del ARN , Esquizofrenia/genética , Encéfalo/metabolismo , Humanos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN , TranscriptomaRESUMEN
The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using intensity normalization and foregoing background subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and we propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations.
Asunto(s)
Análisis por Micromatrices/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , ARN/análisis , ARN/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN/genética , Valores de Referencia , Proyectos de InvestigaciónRESUMEN
BACKGROUND: The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed. METHODS: Protocols and quality controls are given for the following: 1) extraction, purification, and NeuN neuronal marker immunotagging of nuclei from adult human cerebral cortex; 2) fluorescence-activated nuclei sorting; 3) preparation of chromatin by micrococcal nuclease digest; 4) ChIP for open chromatin-associated histone methylation and acetylation; and 5) generation and sequencing of ChIP-seq libraries. RESULTS: We present a ChIP-seq pipeline for epigenome mapping in the neuronal and nonneuronal nuclei from the postmortem brain. This includes a stepwise system of quality controls and user-friendly data presentation platforms. CONCLUSIONS: Our practical guidelines will be useful for projects aimed at histone posttranslational modification mapping in chromatin extracted from hundreds of postmortem brain samples in cell-type-specific manner.
Asunto(s)
Corteza Cerebral/metabolismo , Epigénesis Genética , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/metabolismo , Nucleosomas/metabolismo , Acetilación , Antígenos Nucleares/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Metilación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.