RESUMEN
We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.
Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis , Proteómica/métodos , Factores de TiempoRESUMEN
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range. We also use a newly developed extracellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5000 plasma proteins in a 60 min gradient with the Orbitrap Astral mass spectrometer.
Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteínas SanguíneasRESUMEN
The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer's acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometers.
RESUMEN
Fatty acids play important functional and protective roles in living systems. This paper reports on the synthesis of a previously unidentified 19 carbon furan-containing fatty acid, 10,13-epoxy-11-methyl-octadecadienoate (9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid) (19Fu-FA), in phospholipids from Rhodobacter sphaeroides. We show that 19Fu-FA accumulation is increased in cells containing mutations that increase the transcriptional response of this bacterium to singlet oxygen ((1)O2), a reactive oxygen species generated by energy transfer from one or more light-excited donors to molecular oxygen. We identify a previously undescribed class of S-adenosylmethionine-dependent methylases that convert a phospholipid 18 carbon cis unsaturated fatty acyl chain to a 19 carbon methylated trans unsaturated fatty acyl chain (19M-UFA). We also identify genes required for the O2-dependent conversion of this 19M-UFA to 19Fu-FA. Finally, we show that the presence of (1)O2 leads to turnover of 19Fu-Fa in vivo. We propose that furan-containing fatty acids like 19Fu-FA can act as a membrane-bound scavenger of (1)O2, which is naturally produced by integral membrane enzymes of the R. sphaeroides photosynthetic apparatus.
Asunto(s)
Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Furanos/metabolismo , Cromatografía de Gases , Especies Reactivas de Oxígeno/metabolismo , Rhodobacter sphaeroides/metabolismo , Oxígeno Singlete/metabolismoRESUMEN
Identification of unknown peaks in gas chromatography/mass spectrometry (GC/MS)-based discovery metabolomics is challenging, and remains necessary to permit discovery of novel or unexpected metabolites that may elucidate disease processes and/or further our understanding of how genotypes relate to phenotypes. Here, we introduce two new technologies and an analytical workflow that can facilitate the identification of unknown peaks. First, we report on a GC/Quadrupole-Orbitrap mass spectrometer that provides high mass accuracy, high resolution, and high sensitivity analyte detection. Second, with an "intelligent" data-dependent algorithm, termed molecular-ion directed acquisition (MIDA), we maximize the information content generated from unsupervised tandem MS (MS/MS) and selected ion monitoring (SIM) by directing the MS to target the ions of greatest information content, that is, the most-intact ionic species. We combine these technologies with (13)C- and (15)N-metabolic labeling, multiple derivatization and ionization types, and heuristic filtering of candidate elemental compositions to achieve (1) MS/MS spectra of nearly all intact ion species for structural elucidation, (2) knowledge of carbon and nitrogen atom content for every ion in MS and MS/MS spectra, (3) relative quantification between alternatively labeled samples, and (4) unambiguous annotation of elemental composition.
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/instrumentación , Metabolómica , Límite de DetecciónRESUMEN
Identification of unknown compounds is of critical importance in GC/MS applications (metabolomics, environmental toxin identification, sports doping, petroleomics, and biofuel analysis, among many others) and remains a technological challenge. Derivation of elemental composition is the first step to determining the identity of an unknown compound by MS, for which high accuracy mass and isotopomer distribution measurements are critical. Here, we report on the development of a dedicated, applications-grade GC/MS employing an Orbitrap mass analyzer, the GC/Quadrupole-Orbitrap. Built from the basis of the benchtop Orbitrap LC/MS, the GC/Quadrupole-Orbitrap maintains the performance characteristics of the Orbitrap, enables quadrupole-based isolation for sensitive analyte detection, and includes numerous analysis modalities to facilitate structural elucidation. We detail the design and construction of the instrument, discuss its key figures-of-merit, and demonstrate its performance for the characterization of unknown compounds and environmental toxins.
Asunto(s)
Espectrometría de Masas/instrumentación , Diseño de EquipoRESUMEN
Selected reaction monitoring on a triple quadrupole mass spectrometer is currently experiencing a renaissance within the proteomics community for its, as yet, unparalleled ability to characterize and quantify a set of proteins reproducibly, completely, and with high sensitivity. Given the immense benefit that high resolution and accurate mass instruments have brought to the discovery proteomics field, we wondered if highly accurate mass measurement capabilities could be leveraged to provide benefits in the targeted proteomics domain as well. Here, we propose a new targeted proteomics paradigm centered on the use of next generation, quadrupole-equipped high resolution and accurate mass instruments: parallel reaction monitoring (PRM). In PRM, the third quadrupole of a triple quadrupole is substituted with a high resolution and accurate mass mass analyzer to permit the parallel detection of all target product ions in one, concerted high resolution mass analysis. We detail the analytical performance of the PRM method, using a quadrupole-equipped bench-top Orbitrap MS, and draw a performance comparison to selected reaction monitoring in terms of run-to-run reproducibility, dynamic range, and measurement accuracy. In addition to requiring minimal upfront method development and facilitating automated data analysis, PRM yielded quantitative data over a wider dynamic range than selected reaction monitoring in the presence of a yeast background matrix because of PRM's high selectivity in the mass-to-charge domain. With achievable linearity over the quantifiable dynamic range found to be statistically equal between the two methods, our investigation suggests that PRM will be a promising new addition to the quantitative proteomics toolbox.
Asunto(s)
Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Proteómica/métodos , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Péptidos/químicaRESUMEN
Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.
RESUMEN
We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range. We also use a newly developed extra-cellular vesicle enrichment protocol to reach new depths of coverage in the plasma proteome, quantifying over 5,000 plasma proteins in a 60-minute gradient with the Orbitrap Astral mass spectrometer.
RESUMEN
We detail the development and characterization of a GC/QLT-Orbitrap hybrid mass spectrometer capable of high resolution (up to 100,000 at m/z 400) and sub-parts-per-million mass accuracy GC/MS. A high-duty cycle, innovative scan type, the nested scan, was implemented to synchronize the Orbitrap acquisition rate and the time scale of gas chromatography (up to 6.5 Hz at resolution 7500). We benchmark this instrument's key figures of merit, including resolution, mass accuracy, linear dynamic range, and spectral accuracy, and demonstrate its performance for two challenging applications: the determination of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in environmental samples and the profiling of primary metabolites in Arabidopsis thaliana extracts.