Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 15(4): e1007989, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034467

RESUMEN

We carried out whole genome resequencing of 127 chicken including red jungle fowl and multiple populations of commercial broilers and layers to perform a systematic screening of adaptive changes in modern chicken (Gallus gallus domesticus). We uncovered >21 million high quality SNPs of which 34% are newly detected variants. This panel comprises >115,000 predicted amino-acid altering substitutions as well as 1,100 SNPs predicted to be stop-gain or -loss, several of which reach high frequencies. Signatures of selection were investigated both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during domestication and breed development. Contrasting wild and domestic chicken we confirmed selection at the BCO2 and TSHR loci and identified 34 putative sweeps co-localized with ALX1, KITLG, EPGR, IGF1, DLK1, JPT2, CRAMP1, and GLI3, among others. Analysis of enrichment between groups of wild vs. commercials and broilers vs. layers revealed a further panel of candidate genes including CORIN, SKIV2L2 implicated in pigmentation and LEPR, MEGF10 and SPEF2, suggestive of production-oriented selection. SNPs with marked allele frequency differences between wild and domestic chicken showed a highly significant deficiency in the proportion of amino-acid altering mutations (P<2.5×10-6). The results contribute to the understanding of major genetic changes that took place during the evolution of modern chickens and in poultry breeding.


Asunto(s)
Adaptación Biológica , Pollos/genética , Genoma , Genómica , Alelos , Animales , Biología Computacional/métodos , Frecuencia de los Genes , Variación Genética , Genómica/métodos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple
2.
Sci Rep ; 12(1): 5590, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379846

RESUMEN

Orphan legume crops play an important role in smallholder farmers' food systems. Though less documented, they have the potential to contribute to adequate nutrition in vulnerable communities. Unfortunately, data are scarce about the potential of those crops to withstand current and future climate variations. Using Macrotyloma geocarpum as an example, we used ecological niche modeling to explore the role of ecology on the current and future distributions of genetic populations of Kersting's groundnut. Our findings showed that: (1) the models had good predictive power, indicating that M. geocarpum's distribution was correlated with both climatic and soil layers; (2) identity and similarity tests revealed that the two genetic groups have identical and similar environmental niches; (3) by integrating the genetic information in niche modeling, niches projections show divergence in the response of the species and genetic populations to ongoing climate change. This study highlights the importance of incorporating genetic data into Ecological Niche Modeling (ENM) approaches to obtain a finer information of species' future distribution, and explores the implications for agricultural adaptation, with a particular focus on identifying priority actions in orphan crops conservation and breeding.


Asunto(s)
Fabaceae , Fitomejoramiento , África Occidental , Ecosistema , Fabaceae/genética , Estructuras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA