Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7852): 138-143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731925

RESUMEN

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Bacterias/inmunología , Antígenos HLA/inmunología , Melanoma/inmunología , Melanoma/microbiología , Péptidos/análisis , Péptidos/inmunología , Presentación de Antígeno , Bacterias/clasificación , Bacterias/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Antígenos HLA/análisis , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Metástasis de la Neoplasia/inmunología , Filogenia , ARN Ribosómico 16S/genética
2.
Cell ; 144(5): 675-88, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376231

RESUMEN

Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Transducción de Señal , Receptores Toll-Like/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Toll-Like/inmunología
3.
Curr Microbiol ; 79(5): 128, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287182

RESUMEN

Many studies have focused on the metabolic capacity of human gut microbiota to produce short-chain fatty acids and subsequent effects on host physiology. Given scarce data on how SCFAs produced by gut bacteria participate in cross-feeding to influence community structure and function, we evaluated the potential of SCFAs to modulate human gut microbiota in vitro. We employed anaerobic fecal cultivation in chemically defined medium supplemented with one of nine SCFAs to determine effects on both gut microbial community structure via 16S rRNA sequencing and function via genome reconstruction analysis. Each SCFA displayed significant and unique modulatory potential with respect to the relative abundance of bacterial taxa. Analysis of SCFA-supplemented communities revealed that alterations of individual closely related phylotypes displayed coherent changes, although exceptions were also observed which suggest strain-dependent differences in SCFA-induced changes. We used genome reconstruction to evaluate the functional implications of SCFA-mediated restructuring of fecal communities. We note that some SCFA-supplemented cultures displayed a reduction in the predicted abundance of SCFA producers, which suggests a possible undefined negative feedback mechanism. We conclude that SCFAs are not simply end-products of metabolism but also serve to modulate the gut microbiota through cross-feeding that alters the fitness of specified taxa. These results are important in the identification of prebiotics that elevate specific SCFAs for therapeutic benefit and highlight SCFA consumers as a salient part of the overall metabolic flux pertaining to bacterial fermentative processes.


Asunto(s)
Microbioma Gastrointestinal , Bacterias/genética , Bacterias/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Humanos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
4.
J Neurovirol ; 27(2): 228-238, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33651324

RESUMEN

The biological mechanisms underlying emotional distress in HIV infection are likely to be complex but remain understudied. We investigated whether dysbiotic signatures in the gut microbiome of persons living with HIV (PLWH) are associated with their emotional status. We retrospectively examined the gut microbiome and clinical evaluation of 129 adults (94 PLWH and 35 HIV-) enrolled at UC San Diego's HIV Neurobehavioral Research Program. A subset of participants (32 PLWH vs. 13 HIV-) underwent an emotional assessment using the NIH Toolbox Emotion Battery summarized by three composite scores (negative affect, social satisfaction, and psychological well-being). We then sequenced the 16S rDNA V3-V4 regions from stool and performed taxonomic assignment using CLC Microbial Genomics Module. The gut microbiota profiles were evaluated in relation to participants' emotional assessment. All analyses were done in R statistical software. We found that the relative abundance of aerotolerant bacteria was significantly higher in PLWH (p < 0.01) and was associated with a lifetime major depression diagnosis independently of HIV status (p = 0.05). Moreover, PLWH experienced significantly worse psychological well-being (p = 0.02), less social satisfaction (p = 0.03), and more negative affect (p = 0.02). Higher levels of aerotolerant bacteria were associated with worse psychological well-being (rho = -0.35, p = 0.02), less social satisfaction (r = - 0.42, p < 0.01), and more negative affect (rho = 0.46, p < 0.01). The association of aerotolerant bacteria with social satisfaction and negative affect was independent of HIV status (p < 0.05, for both). The over-representation of aerotolerant bacteria in the gut may reflect worse oxidative stress and barrier defects and may contribute to emotional distress during HIV infection.


Asunto(s)
Disbiosis/virología , Emociones/fisiología , Microbioma Gastrointestinal/fisiología , Infecciones por VIH/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
5.
Proc Natl Acad Sci U S A ; 111(51): 18321-6, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489084

RESUMEN

Environmental factors clearly affect colorectal cancer (CRC) incidence, but the mechanisms through which these factors function are unknown. One prime candidate is an altered colonic microbiota. Here we show that the mucosal microbiota organization is a critical factor associated with a subset of CRC. We identified invasive polymicrobial bacterial biofilms (bacterial aggregates), structures previously associated with nonmalignant intestinal pathology, nearly universally (89%) on right-sided tumors (13 of 15 CRCs, 4 of 4 adenomas) but on only 12% of left-sided tumors (2 of 15 CRCs, 0 of 2 adenomas). Surprisingly, patients with biofilm-positive tumors, whether cancers or adenomas, all had biofilms on their tumor-free mucosa far distant from their tumors. Bacterial biofilms were associated with diminished colonic epithelial cell E-cadherin and enhanced epithelial cell IL-6 and Stat3 activation, as well as increased crypt epithelial cell proliferation in normal colon mucosa. High-throughput sequencing revealed no consistent bacterial genus associated with tumors, regardless of biofilm status. However, principal coordinates analysis revealed that biofilm communities on paired normal mucosa, distant from the tumor itself, cluster with tumor microbiomes as opposed to biofilm-negative normal mucosa bacterial communities also from the tumor host. Colon mucosal biofilm detection may predict increased risk for development of sporadic CRC.


Asunto(s)
Neoplasias Colorrectales/microbiología , Microbiota , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biopelículas , Colonoscopía , Humanos
6.
Proc Natl Acad Sci U S A ; 110(13): 5010-5, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479646

RESUMEN

Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR-DNA and QsrR-menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens.


Asunto(s)
Proteínas Bacterianas , Benzoquinonas , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Represoras , Transducción de Señal/fisiología , Staphylococcus aureus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
7.
BMC Genomics ; 15: 1145, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25527145

RESUMEN

BACKGROUND: Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all ß-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. RESULTS: To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. CONCLUSIONS: We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , ARN Bacteriano/genética , Infecciones Estafilocócicas/genética , Transcriptoma , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Estados Unidos/epidemiología
8.
Curr Top Microbiol Immunol ; 363: 21-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22886542

RESUMEN

Salmonella and Yersinia are two distantly related genera containing species with wide host-range specificity and pathogenic capacity. The metabolic complexity of these organisms facilitates robust lifestyles both outside of and within animal hosts. Using a pathogen-centric systems biology approach, we are combining a multi-omics (transcriptomics, proteomics, metabolomics) strategy to define properties of these pathogens under a variety of conditions including those that mimic the environments encountered during pathogenesis. These high-dimensional omics datasets are being integrated in selected ways to improve genome annotations, discover novel virulence-related factors, and model growth under infectious states. We will review the evolving technological approaches toward understanding complex microbial life through multi-omic measurements and integration, while highlighting some of our most recent successes in this area.


Asunto(s)
Interacciones Huésped-Patógeno , Salmonella/patogenicidad , Biología de Sistemas/métodos , Yersinia/patogenicidad , Animales , Genómica , Humanos , Metabolómica , Proteómica
9.
BMC Bioinformatics ; 14: 341, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24274019

RESUMEN

BACKGROUND: A novel highly conserved protein domain, DUF162 [Pfam: PF02589], can be mapped to two proteins: LutB and LutC. Both proteins are encoded by a highly conserved LutABC operon, which has been implicated in lactate utilization in bacteria. Based on our analysis of its sequence, structure, and recent experimental evidence reported by other groups, we hereby redefine DUF162 as the LUD domain family. RESULTS: JCSG solved the first crystal structure [PDB:2G40] from the LUD domain family: LutC protein, encoded by ORF DR_1909, of Deinococcus radiodurans. LutC shares features with domains in the functionally diverse ISOCOT superfamily. We have observed that the LUD domain has an increased abundance in the human gut microbiome. CONCLUSIONS: We propose a model for the substrate and cofactor binding and regulation in LUD domain. The significance of LUD-containing proteins in the human gut microbiome, and the implication of lactate metabolism in the radiation-resistance of Deinococcus radiodurans are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/química , Deinococcus/metabolismo , Ácido Láctico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Deinococcus/genética , Humanos , Microbiota/efectos de la radiación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
10.
Mol Microbiol ; 86(2): 331-48, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22882143

RESUMEN

In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase's phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-haemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/genética , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Transducción de Señal , Staphylococcus aureus/genética , Factores de Transcripción
11.
Antimicrob Agents Chemother ; 57(5): 2243-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23459488

RESUMEN

The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Genoma Bacteriano , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Operón , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo
12.
Mol Syst Biol ; 8: 558, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22735334

RESUMEN

Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors.


Asunto(s)
Factores Inmunológicos/metabolismo , Activación de Macrófagos/fisiología , Redes y Vías Metabólicas/genética , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Glutamina/metabolismo , Leucemia/patología , Redes y Vías Metabólicas/inmunología , Metabolómica , Ratones , Modelos Biológicos , Óxido Nítrico/metabolismo , Proteómica , Transcriptoma
13.
Microorganisms ; 11(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37630539

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. Although the etiology of PD remains elusive, it has been hypothesized that initial dysregulation may occur in the gastrointestinal tract and may be accompanied by gut barrier defects. A strong clinical interest in developing therapeutics exists, including for the treatment of gut microbiota and physiology. We previously reported the impact of healthy fecal microbiota anaerobic cultures supplemented with nootropic herbs. Here, we evaluated the effect of nootropic Ayurvedic herbs on fecal microbiota derived from subjects with PD in vitro using 16S rRNA sequencing. The microbiota underwent substantial change in response to each treatment, comparable in magnitude to that observed from healthy subjects. However, the fecal samples derived from each participant displayed unique changes, consistent with a personalized response. We used genome-wide metabolic reconstruction to predict the community's metabolic potential to produce products relevant to PD pathology, including SCFAs, vitamins and amino acid degradation products. These results suggest the potential value of conducting in vitro cultivation and analyses of PD stool samples as a means of prescreening patients to select the medicinal herbs for which that individual is most likely to respond and derive benefit.

14.
Microorganisms ; 11(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37110291

RESUMEN

Several studies have examined the impact of prebiotics on gut microbiota and associated changes in host physiology. Here, we used the in vitro cultivation of human fecal samples stimulated with a series of chemically related prebiotics and medicinal herbs commonly used in Ayurvedic medicine, followed by 16S rRNA sequencing. We applied a genome-wide metabolic reconstruction of enumerated communities to compare and contrast the structural and functional impact of prebiotics and medicinal herbs. In doings so, we examined the relationships between discrete variations in sugar composition and sugar linkages associated with each prebiotic to drive changes in microbiota composition. The restructuring of microbial communities with glycan substrates alters community metabolism and its potential impact on host physiology. We analyzed sugar fermentation pathways and products predicted to be formed and prebiotic-induced changes in vitamin and amino acid biosynthesis and degradation. These results highlight the utility of combining a genome-wide metabolic reconstruction methodology with 16S rRNA sequence-based community profiles to provide insights pertaining to community metabolism. This process also provides a rational means for prioritizing in vivo analysis of prebiotics and medicinal herbs in vivo to test hypotheses related to therapeutic potential in specific diseases of interest.

15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1359-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22993090

RESUMEN

Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Bacillus anthracis/enzimología , Proteínas Bacterianas/química , Staphylococcus aureus/enzimología , Vibrio cholerae/enzimología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , Apoenzimas/química , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/antagonistas & inhibidores , Catálisis , Cristalografía por Rayos X , Holoenzimas/química , Staphylococcus aureus/patogenicidad , Vibrio cholerae/patogenicidad
16.
J Am Chem Soc ; 134(1): 305-14, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22122613

RESUMEN

Oxygen sensing and redox signaling significantly affect bacterial physiology and host-pathogen interaction. Here we show that a Staphylococcus aureus two-component system, AirSR (anaerobic iron-sulfur cluster-containing redox sensor regulator, formerly YhcSR), responds to oxidation signals (O(2), H(2)O(2), NO, etc) by using a redox-active [2Fe-2S] cluster in the sensor kinase AirS. Mutagenesis studies demonstrate that the [2Fe-2S] cluster is essential for the kinase activity of AirS. We have also discovered that a homologue of IscS (SA1450) in S. aureus is active as a cysteine desulfurase, which enables the in vitro reconstitution of the [2Fe-2S] cluster in AirS. Phosphorylation assays show that the oxidized AirS with a [2Fe-2S](2+) cluster is the fully active form of the kinase but not the apo-AirS nor the reduced AirS possessing a [2Fe-2S](+) cluster. Overoxidation by prolonged exposure to O(2) or contact with H(2)O(2) or NO led to inactivation of AirS. Transcriptome analysis revealed that mutation of airR impacts the expression of ~355 genes under anaerobic conditions. Moreover, the mutant strain displayed increased resistance toward H(2)O(2), vancomycin, norfloxacin, and ciprofloxacin under anaerobic conditions. Together, our results show that S. aureus AirSR is a redox-dependent global regulatory system that plays important roles in gene regulation using a redox active Fe-S cluster under O(2)-limited conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Staphylococcus aureus/metabolismo , Aerobiosis , Anaerobiosis , Farmacorresistencia Bacteriana , Ambiente , Peróxido de Hidrógeno/metabolismo , Cinética , Óxido Nítrico/metabolismo , Oxidación-Reducción , Análisis Espectral , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología
17.
Mol Microbiol ; 79(1): 133-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21166899

RESUMEN

In this work we describe the identification of a copper-inducible regulon in Mycobacterium tuberculosis (Mtb). Among the regulated genes was Rv0190/MT0200, a paralogue of the copper metalloregulatory repressor CsoR. The five-locus regulon, which includes a gene that encodes the copper-protective metallothionein MymT, was highly induced in wild-type Mtb treated with copper, and highly expressed in an Rv0190/MT0200 mutant. Importantly, the Rv0190/MT0200 mutant was hyper-resistant to copper. The promoters of all five loci share a palindromic motif that was recognized by the gene product of Rv0190/MT0200. For this reason we named Rv0190/MT0200 RicR for regulated in copper repressor. Intriguingly, several of the RicR-regulated genes, including MymT, are unique to pathogenic Mycobacteria. The identification of a copper-responsive regulon specific to virulent mycobacterial species suggests copper homeostasis must be maintained during an infection. Alternatively, copper may provide a cue for the expression of genes unrelated to metal homeostasis, but nonetheless necessary for survival in a host.


Asunto(s)
Cobre/metabolismo , Mycobacterium tuberculosis/fisiología , Regulón , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
18.
Antimicrob Agents Chemother ; 56(10): 5171-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22825121

RESUMEN

Pan-aminoglycoside-resistant Pseudomonas aeruginosa mutants expressing the mexXY components of the aminoglycoside-accommodating MexXY-OprM multidrug efflux system but lacking mutations in the mexZ gene encoding a repressor of this efflux system and in the mexXY promoter have been reported (S. Fraud and K. Poole, Antimicrob. Agents Chemother. 55:1068-1074, 2011). Genome sequencing of one of these mutants, K2966, revealed the presence of a mutation within the predicted promoter region of the rplU-rpmA operon encoding ribosomal proteins L21 and L27, consistent with an observed 2-fold decrease in expression of this operon in the mutant relative to wild-type P. aeruginosa PAO1. Moreover, correction of the mutation restored rplU-rpmA expression and, significantly, reversed the elevated mexXY expression and pan-aminoglycoside resistance of the mutant. Reduced rplU-rpmA expression was also observed in a second mexXY-expressing pan-aminoglycoside-resistant mutant, K2968, which, however, lacked a mutation in the rplU-rpmA promoter region. Restoration of rplU-rpmA expression in the K2968 mutant following chromosomal integration of the rplU-rpmA operon derived from wild-type P. aeruginosa failed, however, to reverse the elevated mexXY expression and pan-aminoglycoside resistance of this mutant, although it did so for K2966, suggesting that the mutation impacting rplU-rpmA expression in K2968 also impacts other mexXY-related genes. Increased mexXY expression owing to reduced rplU-rpmA expression in K2966 and K2968 was dependent on PA5471, whose expression was also elevated in these mutants. Thus, mutational disruption of ribosome function, by limiting expression of ribosomal constituents, promotes recruitment of mexXY and does so via PA5471, reminiscent of mexXY induction by ribosome-disrupting antimicrobial agents. Interestingly, reduced rplU-rpmA expression was also observed in a mexXY-expressing pan-aminoglycoside-resistant clinical isolate, suggesting that ribosome-perturbing mutations have clinical relevance in the recruitment of the MexXY-OprM aminoglycoside resistance determinant.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Ribosómicas/genética , Regulación Bacteriana de la Expresión Génica/genética , Operón/genética , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Proteome Sci ; 10(1): 30, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22545825

RESUMEN

BACKGROUND: The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. RESULTS: To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. CONCLUSIONS: The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.

20.
Genomics ; 98(1): 26-39, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21447378

RESUMEN

Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.


Asunto(s)
Bacillus anthracis/genética , Evolución Molecular , Genoma Bacteriano , Bacillus anthracis/patogenicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA