RESUMEN
The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ΔN peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.
Asunto(s)
Potexvirus , Potexvirus/química , Potexvirus/metabolismo , Proteínas de la Cápside/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Virión/metabolismoRESUMEN
Structure and function of bacterial nucleoid is controlled by the nucleoid-associated proteins (NAP). In any phase of growth, various NAPs, acting sequentially, condense nucleoid and facilitate formation of its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform nucleoid into a static, transcriptionally inactive structure, effectively protected from the external influences. Discovery of crystal structures in living cells and association of this phenomenon with the bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying structure of proteins in solution, and dynamic light scattering as a complementary one. To interpret the SAXS data, various approaches and computer programs were used (in particular, the evaluation of structural invariants, rigid body modeling and equilibrium mixture analysis in terms of the volume fractions of its components were applied), which made it possible to determine macromolecular characteristics and obtain reliable 3D structural models of various oligomeric forms of HU and IHF proteins with ~2 nm resolution typical for SAXS. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. An analysis of the experimental and published data made it possible to hypothesize that just before the Dps expression, it is IHF that forms toroidal structures previously observed in vivo and prepares the platform for formation of DNA-Dps crystals. The results obtained are necessary for further investigation of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome resistance of various pathogens to external conditions.
Asunto(s)
Proteínas de Unión al ADN , Hidrodinámica , Proteínas de Unión al ADN/metabolismo , Dispersión del Ángulo Pequeño , ADN Bacteriano/metabolismo , Difracción de Rayos X , Proteínas Bacterianas/metabolismo , ADNRESUMEN
DNA-binding protein from starved cells (Dps) takes a special place among dodecamer mini-ferritins. Its most important function is protection of bacterial genome from various types of destructive external factors via in cellulo Dps-DNA co-crystallization. This protective response results in the emergence of bacterial resistance to antibiotics and other drugs. The protective properties of Dps have attracted a significant attention of researchers. However, Dps has another equally important functional role. Being a ferritin-like protein, Dps acts as an iron depot and protects bacterial cells from the oxidative damage initiated by the excess of iron. Here we investigated formation of iron oxide nanoparticles in the internal cavity of the Dps dodecamer. We used anomalous small-angle X-ray scattering as the main research technique, which allows to examine the structure of metal-containing biological macromolecules and to analyze the size distribution of metal nanoparticles formed in them. The contributions of protein and metal components to total scattering were distinguished by varying the energy of the incident X-ray radiation near the edge of the metal atom absorption band (the K-band for iron). We examined Dps specimens containing 50, 500, and 2000 iron atoms per protein dodecamer. Analysis of the particle size distribution showed that, depending on the iron content in the solution, the size of the nanoparticles formed inside the protein molecule was 2 to 4 nm and the growth of metal nanoparticles was limited by the size of the protein inner cavity. We also found some amount of iron ions in the Dps surface layer. This layer is very important for the protein to perform its protective functions, since the surface-located N-terminal domains determine the nature of interactions between Dps and DNA. In general, the results obtained in this work can be useful for the next step in studying the Dps phenomenon, as well as in creating biocompatible and solution-stabilized metal nanoparticles.
Asunto(s)
Proteínas Bacterianas , Ferritinas , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Ferritinas/química , Hierro/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Rayos XRESUMEN
Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.
Asunto(s)
Proteínas de la Cápside/metabolismo , Potyvirus/ultraestructura , Virión/ultraestructura , Proteínas de la Cápside/ultraestructura , Dicroismo Circular , Microscopía Electrónica de Transmisión , Potyvirus/metabolismo , Dispersión del Ángulo Pequeño , Virión/metabolismo , Difracción de Rayos XRESUMEN
Insulin receptor-related receptor (IRR) is a receptor tyrosine kinase of the insulin receptor family and functions as an extracellular alkali sensor that controls metabolic alkalosis in the regulation of the acid-base balance. In the present work, we sought to analyze structural features of IRR by comparing them with those of the insulin receptor, which is its closest homolog but does not respond to pH changes. Using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), we investigated the overall conformation of the recombinant soluble IRR ectodomain (ectoIRR) at neutral and alkaline pH. In contrast to the well-known inverted U-shaped (or λ-shaped) conformation of the insulin receptor, the structural models reconstructed at different pH values revealed that the ectoIRR organization has a "droplike" shape with a shorter distance between the fibronectin domains of the disulfide-linked dimer subunits within ectoIRR. We detected no large-scale pH-dependent conformational changes of ectoIRR in both SAXS and AFM experiments, an observation that agreed well with previous biochemical and functional analyses of IRR. Our findings indicate that ectoIRR's sensing of alkaline conditions involves additional molecular mechanisms, for example engagement of receptor juxtamembrane regions or the surrounding lipid environment.
Asunto(s)
Álcalis/metabolismo , Multimerización de Proteína , Receptor de Insulina/química , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Dominios Proteicos , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos XRESUMEN
Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop ß6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.
Asunto(s)
Proteínas Bacterianas/genética , Endo-1,4-beta Xilanasas/química , Rhodothermus/enzimología , Proteínas Bacterianas/química , Endo-1,4-beta Xilanasas/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Rhodothermus/genéticaRESUMEN
Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.
Asunto(s)
Antígenos Virales/química , ADN Viral/química , Herpesvirus Humano 8 , Proteínas Nucleares/química , Rhadinovirus , Antígenos Virales/genética , Antígenos Virales/metabolismo , Sitios de Unión , ADN Viral/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Secuencias Repetidas Terminales , TermodinámicaRESUMEN
Small angle scattering of X-rays (SAXS) and neutrons (SANS) is a structural technique to study disordered systems with chaotic orientations of scattering inhomogeneities at low resolution. An important example of such systems are solutions of biological macromolecules. Rapid development in the methodology for solution scattering data interpretation and model building during the last two decades brought the analysis far beyond the determination of just few overall structural parameters (which was the only possibility in the past) and ensured SAS a firm position in the methods palette of the modern life sciences. The advances in the methodology include ab initio approaches for shape and domain structure restoration from scattering curves without a priori structural knowledge, classification and validation of the models, evaluation of potential ambiguity associated with the reconstruction. In rigid body and hybrid modelling approaches, solution scattering is synergistically used with other structural techniques utilizing the complementary information such as atomic models of the components, intramolecular contacts, subunits orientations etc. for the reconstruction of complex systems. The usual requirement of the sample monodispersity has been loosed recently and the technique can now address such systems as weakly bound oligomers and transient complexes. These state-of-the-art methods are described together with the examples of their applications and the possible ways of post-processing of the models.
Asunto(s)
Modelos Moleculares , Ácidos Nucleicos/ultraestructura , Proteínas/ultraestructura , Dispersión del Ángulo Pequeño , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Conformación Molecular , Difracción de Neutrones/instrumentación , Difracción de Neutrones/métodos , Ácidos Nucleicos/química , Proteínas/química , Sincrotrones/instrumentación , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodosRESUMEN
Retinoid X receptors (RXRs) are transcription factors with important functions in embryonic development, metabolic processes, differentiation, and apoptosis. A particular feature of RXRs is their ability to act as obligatory heterodimerization partners of class II nuclear receptors. At the same time, these receptors are also able to form homodimers that bind to direct repeat separated by one nucleotide hormone response elements. Since the discovery of RXRs, most of the studies focused on its ligand binding and DNA binding domains, while its N-terminal domain (NTD) harboring a ligand-independent activation function remained poorly characterized. Here, we investigated the solution properties of the NTD of RXRα alone and in the context of the full-length receptor using small-angle X-ray scattering and nuclear magnetic resonance spectroscopy. We report the solution structure of the full-length homodimeric RXRα on DNA and show that the NTD remains highly flexible within this complex.
Asunto(s)
Receptor alfa X Retinoide/química , Receptor alfa X Retinoide/metabolismo , Animales , Sitios de Unión/fisiología , Línea Celular , ADN/química , ADN/metabolismo , Insectos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/fisiología , Difracción de Rayos XRESUMEN
A novel approach is presented for an a priori assessment of the ambiguity associated with spherically averaged single-particle scattering. The approach is of broad interest to the structural biology community, allowing the rapid and model-independent assessment of the inherent non-uniqueness of three-dimensional shape reconstruction from scattering experiments on solutions of biological macromolecules. One-dimensional scattering curves recorded from monodisperse systems are nowadays routinely utilized to generate low-resolution particle shapes, but the potential ambiguity of such reconstructions remains a major issue. At present, the (non)uniqueness can only be assessed by a posteriori comparison and averaging of repetitive Monte Carlo-based shape-determination runs. The new a priori ambiguity measure is based on the number of distinct shape categories compatible with a given data set. For this purpose, a comprehensive library of over 14,000 shape topologies has been generated containing up to seven beads closely packed on a hexagonal grid. The computed scattering curves rescaled to keep only the shape topology rather than the overall size information provide a `scattering map' of this set of shapes. For a given scattering data set, one rapidly obtains the number of neighbours in the map and the associated shape topologies such that in addition to providing a quantitative ambiguity measure the algorithm may also serve as an alternative shape-analysis tool. The approach has been validated in model calculations on geometrical bodies and its usefulness is further demonstrated on a number of experimental X-ray scattering data sets from proteins in solution. A quantitative ambiguity score (a-score) is introduced to provide immediate and convenient guidance to the user on the uniqueness of the ab initio shape reconstruction from the given data set.
Asunto(s)
Muramidasa/química , ADN Polimerasa Dirigida por ARN/química , Dispersión del Ángulo Pequeño , Albúmina Sérica Bovina/química , Algoritmos , Animales , Bovinos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Método de Montecarlo , Difracción de Rayos XRESUMEN
The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
Asunto(s)
Disparidad de Par Base , ADN/química , Proteínas de Escherichia coli/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de ProteínaRESUMEN
The four-domain structure of chitinase 60 from Moritella marina (MmChi60) is outstanding in its complexity. Many glycoside hydrolases, such as chitinases and cellulases, have multi-domain structures, but only a few have been solved. The flexibility of the hinge regions between the domains apparently makes these proteins difficult to crystallize. The analysis of an active-site mutant of MmChi60 in an unliganded form and in complex with the substrates NAG4 and NAG5 revealed significant differences in the substrate-binding site compared with the previously determined complexes of most studied chitinases. A SAXS experiment demonstrated that in addition to the elongated state found in the crystal, the protein can adapt other conformations in solution ranging from fully extended to compact.
Asunto(s)
Quitinasas/química , Quitinasas/metabolismo , Moritella/enzimología , Quitinasas/genética , Cristalografía por Rayos X , Ligandos , Moritella/genética , Oligosacáridos/química , Oligosacáridos/metabolismo , Mutación Puntual , Conformación Proteica , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Especificidad por Sustrato , Difracción de Rayos XRESUMEN
Biomolecular corona is the major obstacle to the clinical translation of nanomedicines. Since corona formation is governed by molecular interactions at the nano-bio interface, nanoparticle surface properties such as topography, charge and surface chemistry can be tuned to manipulate biomolecular corona formation. To this end, as the first step towards a deep understanding of the processes of corona formation, it is necessary to develop nanoparticles employing various biocompatible materials and characterize their surface structure and dynamics at the molecular level. In this work, we applied molecular dynamics simulation to study the surface structure of organic core-shell nanoparticles formed by the self-assembly of synthetic molecules composed of a DOPE lipid, a carboxymethylglycine spacer and biotin. Lipid moieties form the hydrophobic core, spacer motifs serve as a hydrophilic shell and biotin residues function as a targeting ligand. By mixing such function-spacer-lipid, spacer-lipid and lipid-only constructs at various molar ratios, densities of the ligand and spacer on the nanoparticle surface were modified. For convenient analysis of the structure and dynamics of all regions of the nanoparticle surface, we compiled topography maps based on atomic coordinates. It was shown that an increase in the density of the shell does not reduce exposure of the core, but increases shell average thickness. Biotin, due to its alkyl valeric acid chain and spacer flexibility, is localized primarily near the hydrophobic core and its partial presentation on the surface occurs only in nanoparticles with higher ligand densities. However, an increase in biotin density leads to its clustering. In turn, ligand clustering diminishes the stealth properties of the shell and targeting efficiency. Based on nanoparticle surface structures, we determined the optimal density of biotin. Experimental studies reported in the literature confirm these conclusions. We also suggest design tips to achieve the preferred biotin presentation. Simulation results are consistent with the synchrotron SAXS profile. We believe that such studies will contribute to a better understanding of nano-bio interactions towards the rational design of efficient drug delivery systems.
Asunto(s)
Biotina , Nanopartículas , Ligandos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , LípidosRESUMEN
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Asunto(s)
Virus de Plantas , Difracción de Rayos X , Microscopía por Crioelectrón , Dispersión del Ángulo Pequeño , Microscopía de Fuerza Atómica/métodos , Rayos X , Cristalografía por Rayos XRESUMEN
A recent renaissance in small-angle X-ray scattering (SAXS) made this technique a major tool for the low-resolution structural characterization of biological macromolecules in solution. The major limitation of existing methods for reconstructing 3D models from SAXS is imposed by the requirement of solute monodispersity. We present a novel approach that couples low-resolution 3D SAXS reconstruction with composition analysis of mixtures. The approach is applicable to polydisperse and difficult to purify systems, including weakly associated oligomers and transient complexes. Ab initio shape analysis is possible for symmetric homo-oligomers, whereas rigid body modeling is applied also to dissociating complexes when atomic structures of the individual subunits are available. In both approaches, the sample is considered as an equilibrium mixture of intact complexes/oligomers with their dissociation products or free subunits. The algorithms provide the 3D low-resolution model (for ab initio modeling, also the shape of the monomer) and the volume fractions of the bound and free state(s). The simultaneous fitting of multiple scattering data sets collected under different conditions allows one to restrain the modeling further. The possibilities of the approach are illustrated in simulated and experimental SAXS data from protein oligomers and multisubunit complexes including nucleoproteins. Using this approach, new structural insights are provided in the association behavior and conformations of estrogen-related receptors ERRα and ERRγ. The possibility of 3D modeling from the scattering by mixtures significantly widens the range of applicability of SAXS and opens novel avenues in the analysis of oligomeric mixtures and assembly/dissociation processes.
Asunto(s)
Sustancias Macromoleculares/química , Receptores de Estrógenos/química , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Receptor Relacionado con Estrógeno ERRalfaRESUMEN
The MaxOcc web portal is presented for the characterization of the conformational heterogeneity of two-domain proteins, through the calculation of the Maximum Occurrence that each protein conformation can have in agreement with experimental data. Whatever the real ensemble of conformations sampled by a protein, the weight of any conformation cannot exceed the calculated corresponding Maximum Occurrence value. The present portal allows users to compute these values using any combination of restraints like pseudocontact shifts, paramagnetism-based residual dipolar couplings, paramagnetic relaxation enhancements and small angle X-ray scattering profiles, given the 3D structure of the two domains as input. MaxOcc is embedded within the NMR grid services of the WeNMR project and is available via the WeNMR gateway at http://py-enmr.cerm.unifi.it/access/index/maxocc . It can be used freely upon registration to the grid with a digital certificate.
Asunto(s)
Internet , Conformación Proteica , Proteínas/química , Algoritmos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de ProteínaRESUMEN
Bacterial Ser/Thr kinases modulate a wide number of cellular processes. In Bacillus subtilis , the Ser/Thr kinase PrkC has been shown to induce germination of bacterial spores in response to DAP-type but not Lys-type cell wall muropeptides. Muropeptides are a clear molecular signal that growing conditions are promising, since they are produced during cell wall peptidoglycan remodeling associated with cell growth and division of neighboring bacteria. However, whether muropeptides are able to bind the protein physically and how the extracellular region is able to distinguish the two types of muropeptides remains unclear. Here we tackled the important question of how the extracellular region of PrkC (EC-PrkC) senses muropeptides. By coupling NMR techniques and protein mutagenesis, we exploited the structural requirements necessary for recognition and binding and proved that muropeptides physically bind to EC-PrkC through DAP-moiety-mediated interactions with an arginine residue, Arg500, belonging to the protein C-terminal PASTA domain. Notably, mutation of this arginine completely suppresses muropeptide binding. Our data provide the first molecular clues into the mechanism of sensing of muropeptides by PrkC.
Asunto(s)
Bacillus subtilis/química , Bacillus subtilis/enzimología , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Especificidad por SustratoRESUMEN
The Ensemble Optimization Method (EOM) is a popular approach to describe small-angle X-ray scattering (SAXS) data from highly disordered proteins. The EOM algorithm selects subensembles of coexisting states from large pools of randomized conformations to fit the SAXS data. Based on the unphysical bimodal radius of gyration (Rg) distribution of conformations resulting from the EOM analysis, a recent article (Fagerberg et al. J. Chem. Theory Comput. 2019, 15 (12), 6968-6983) concluded that this approach inadequately described the SAXS data measured for human Histatin 5 (Hst5), a peptide with antifungal properties. Using extensive experimental and synthetic data, we explored the origin of this observation. We found that the one-bead-per-residue coarse-grained representation with averaged scattering form factors (provided in the EOM as an add-on to represent disordered missing loops or domains) may not be appropriate for EOM analyses of scattering data from short (below 50 residues) proteins/peptides. The method of choice for these proteins is to employ atomistic models (e.g., from molecular dynamics simulations) to sample the protein conformational landscape. As a convenient alternative, we have also improved the coarse-grained approach by introducing amino acid specific form factors in the calculations. We also found that, for small proteins, the search for relatively large subensembles of 20-50 conformers (as implemented in the original EOM version) more adequately describes the conformational space sampled in solution than the procedures optimizing the ensemble size. Our observations have been added as recommendations into the information for EOM users to promote the proper utilization of the program for ensemble-based modeling of SAXS data for all types of disordered systems.
Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Humanos , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA-Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA-Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA-Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA-Dps complexes. Angle analysis has demonstrated that in DNA-Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Plásmidos/química , Silicatos de Aluminio/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Cristalización , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos XRESUMEN
A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups. A sharp increase in the zero-shear viscosity of dendrimer melts was found between the 5th and the 7th dendrimer generations, which was qualitatively identical to that previously reported for polycarbosilane dendrimers with butyl terminal groups. The viscoelastic properties of high-generation dendrimers seem to follow some general trends with an increase in the generation number, which are determined by the regular branching structure of dendrimers.