Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566306

RESUMEN

The aim of this work was to optimize and characterize nanocomposite films based on gellan gum methacrylate (GG-MA) and silver nanoparticles (AgNPs) for application in the field of wound dressing. The films were produced using the solvent casting technique coupled with a photocuring process. The UV irradiation of GG-MA solutions containing glycerol as a plasticizer and different amounts of silver nitrate resulted in the concurrent crosslinking of the photocurable polymer and a reduction of Ag ions with consequent in situ generation of AgNPs. In the first part of the work, the composition of the films was optimized, varying the concentration of the different components, the GG-MA/glycerol and GG-MA/silver nitrate weight ratios as well as the volume of the film-forming mixture. Rheological analyses were performed on the starting solutions, whereas the obtained films were characterized for their mechanical properties. Colorimetric analyses and swelling studies were also performed in order to determine the AgNPs release and the water uptake capacity of the films. Finally, microbiological tests were carried out to evaluate the antimicrobial efficacy of the optimized films, in order to demonstrate their possible application as dressings for the treatment of infected hard-to-heal wounds, which is a demanding task for public healthcare.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Antibacterianos , Vendajes , Glicerol , Plata , Nitrato de Plata , Solventes
2.
Bioelectromagnetics ; 35(4): 309-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24482311

RESUMEN

Recently, the use of liposomes loaded with magnetic nanoparticles (magnetoliposomes, (MLs)) has been intensely growing as a new drug delivery system. With the use of alternating magnetic fields, it is possible to remotely control the delivery of a drug or any other macromolecule loaded inside the MLs. In this experiment, the release of a fluorescent dye from MLs is achieved through an alternating magnetic field of 20 kHz and amplitude below 100 A/m, and without a macroscopic temperature increase.


Asunto(s)
Liposomas , Campos Magnéticos , Nanopartículas del Metal/administración & dosificación , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Proyectos Piloto , Temperatura
3.
Pharmaceutics ; 16(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38258118

RESUMEN

In this work, Lavandula x intermedia essential oil (LEO) was encapsulated in lipid-based nanoemulsions (NanoLEO) using the solvent-displacement technique. In order to preserve the colloidal stability of the formulation, LEO was appropriately doped with the incorporation of different levels of a water-insoluble oil used as a ripening inhibitor. All the nanoemulsion samples were evaluated in terms of the impact of the water-insoluble oil on the nanoemulsion formation, physical-chemical properties, and antibacterial effectiveness against E. coli (Gram-negative) and B. cereus (Gram-positive). The presence of the inert oil added benefits to the formulations in terms of appearance, colloidal stability, and loss of volatile components. However, the antimicrobial activity of the nanoemulsions dramatically decreased with the ripening inhibitor addition, probably because it hampered the internalization of the antimicrobial components of LEO within the bacterial cell membranes, thus nullifying the delivery ability of the nanoemulsion formulation. On the contrary, the undoped NanoLEO formulation showed unaltered antibacterial activity in both E. coli and B. cereus up to 40 weeks from the preparation.

4.
Pharmaceutics ; 16(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38399273

RESUMEN

In this study, the amphiphilic N-palmitoyl-KTTKS peptide was integrated in the bilayer of egg-derived phosphatidylcholine (PC) vesicles using two different preparation methods, namely thin-film evaporation (TLE) and reverse-phase evaporation (REV). Both the REV and TLE methods allowed for the formation of homogeneous liposome dispersions (PdI < 0.20) with mean hydrodynamic diameters of <100 nm and <200 nm, respectively, a net negative surface charge and a percentage of structured phospholipids higher than 90%. The inclusion of the amphiphilic N-palmitoyl-KTTKS peptide within phospholipid-based vesicles could improve peptide stability and skin delivery. Therefore, the obtained liposomes were evaluated via experiments assessing the synthesis of collagen and the ECM in 3T3-NIH fibroblasts. The obtained results showed that, when delivered with PC liposomes, pal-KTTKS stimulated collagen production more than free pentapeptide and 1 mM ascorbic acid, used as a positive control.

5.
Gels ; 9(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38131965

RESUMEN

Critical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold. Three-dimensional polymer networks are frequently used as scaffolds to allow cell proliferation and tissue regeneration. In particular, cryogels give promising results for this purpose, thanks to their peculiar properties. Cryogels are indeed characterized by an interconnected porous structure and a typical sponge-like behavior, which facilitate cellular infiltration and ingrowth. Their composition and the fabrication procedure can be appropriately tuned to obtain scaffolds that match the requirements of a specific tissue or organ to be regenerated. These features make cryogels interesting and promising scaffolds for the regeneration of different tissues, including those characterized by very complex mechanical and physical properties, such as bones and joints. In this review, state-of-the-art fabrication and employment of cryogels for supporting effective osteogenic or chondrogenic differentiation to allow for the regeneration of functional tissues is reported. Current progress and challenges for the implementation of this technology in clinical practice are also highlighted.

6.
Bioelectrochemistry ; 147: 108218, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933972

RESUMEN

Electropulsation has become a powerful technological platform for electromanipulation of cells and tissues for various medical and biotechnological applications, but the molecular changes that underlay the very first initiation step of this process have not been experimentally observed. Here, we endowed a wide-field Coherent anti-Stokes Raman Scattering platform with an ad-hoc electromagnetic exposure device and we demonstrated, using artificial lipid vesicles (i.e. liposomes), that electropulsation is initiated by the increase of interstitial water content in liposome membranes. A pulse-dependent accumulation of the interstitial water molecules is observed in the membranes and a plausible mechanism supported by a computational electrochemical model is presented and discussed.


Asunto(s)
Liposomas , Espectrometría Raman , Electricidad , Espectrometría Raman/métodos , Agua
7.
Carbohydr Polym ; 296: 119916, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087972

RESUMEN

Chondroitin sulfate methacrylate (CS-MA) is a semisynthetic biopolymer increasingly used for the fabrication of chemical hydrogels. In this study, the methacrylation reaction of native CS was carried out with glycidyl methacrylate in dimethyl sulfoxide and optimized to obtain tunable and reproducible methacrylation degrees in a short reaction time. The methacrylation reaction was deeply characterized by mono- and bi-dimensional (1D, 2D) NMR spectroscopy of CS-MA derivatives with different methacrylation degrees. In contrast to what previously reported in the literature, HSQC, HMBC and TOCSY analyses revealed that the methacrylation reaction proceeds via both epoxy ring-opening and transesterification, involving predominantly the primary hydroxyl groups of CS, while preserving sulfate and carboxyl groups of the biopolymer. These findings are of fundamental importance for appropriate and rational design of CS-MA-based biomaterials.


Asunto(s)
Sulfatos de Condroitina , Metacrilatos , Sulfatos de Condroitina/química , Compuestos Epoxi , Espectroscopía de Resonancia Magnética , Metacrilatos/química
8.
Foods ; 10(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34441585

RESUMEN

This study aimed to evaluate the quality of oils available on the Italian market and purchased directly from the mill or in the supermarket and labelled as extra virgin olive oils (EVOOs). As one of the most relevant foods of the Mediterranean diet and recognized as a functional food if regularly consumed, the quality of EVOO needs to be continuously monitored. Different analytical protocols were applied. The spectrophotometric parameters used to classify the extra virgin olive oils-a CIEL*a*b*color analysis and the quali-quantitative analysis of bioactive molecules by HPLC-DAD detection and the anti-radical activity, by the DPPH method, were evaluated and compared among the samples. This study confirmed a very high variation in terms of quality, both in oils purchased directly from mills throughout Italy, but also in oils labeled as "100% of Italian origin". Due to the high variability reconfirmed in the monitored samples, it is necessary to carry out a capillary control, not limited only to the parameters indexed by law. A useful complementary method could be represented by reflectance colorimetric analysis.

9.
Pharmaceutics ; 13(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34684003

RESUMEN

Stimuli-sensitive nanocarriers have recently been developed as a powerful tool in biomedical applications such as drug delivery, detection, and gene transfer techniques. Among the external triggers investigated, low intensity magnetic fields represent a non-invasive way to remotely control the release of compounds from a magneto-sensitive carrier. Magnetoliposomes (MLs), i.e., liposomes entrapping magnetic nanoparticles (MNPs), are studied due to their capacity to transport hydrophobic and hydrophilic agents, their easy production, and due to the ability of MNPs to respond to a magnetic actuation determining the triggered release of the encapsulated compounds. Here we investigated the design and optimization of the MLs to obtain an efficient on-demand release of the transported compounds, due to the magneto-mechanical actuation induced by applying low-intensity pulsed electromagnetic fields (PEMFs). In particular we studied the effect of the bilayer packing on the ability of MLs, with oleic acid-coated MNPs encapsulated in the bilayer, to respond to PEMFs application. Three kinds of MLs are produced with an increasing rigidity of the bilayer, defined as Liquid Disorder, Liquid Order, and Gel MLs and the delivery of a hydrophilic dye (as a model drug) is investigated. Results demonstrate the efficacy of the magnetic trigger on high-ordered bilayers, which are unable to dampen the perturbation produced by MNPs motion.

10.
Gels ; 7(4)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34698160

RESUMEN

Recently, we reported the synthesis and characterization of a new dextran derivative obtained by grafting polyethylene glycol methacrylate to a polysaccharide backbone through a carbonate bond. This moiety was introduced because it allows for the fabrication, through a photo-induced crosslinking reaction, of biodegradable hydrogels particularly suitable for the release of high molecular weight molecules. Here, we investigate the influence of the oxyethylene chain length and the molecular weight of the starting dextran on the main properties of the polymeric solutions as well as those of the corresponding hydrogels. All synthesized polymeric derivatives were characterized by FTIR, NMR, and rheological analyses. The photo-crosslinking reaction of the polymers allowed us to obtain biodegradable networks tested for their mechanical properties, swelling, and degradation behavior. The results showed that both the oxyethylene chain length as well as the molecular weight of the starting dextran influenced swelling and degradation of the hydrogel network. As a consequence, the different behaviors in terms of swelling and degradability were able to affect the release of a large model molecule over time, making these matrices suitable candidates for the delivery of high molecular weight drug substances.

11.
Int J Biol Macromol ; 166: 1292-1300, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161086

RESUMEN

Cryogels are a particular type of hydrogels that possess great potential in both fields of drug delivery and tissue engineering. Based on these premises, the goal of this work was to develop a cytocompatible polymeric cryogel, which could be used as a spongy scaffold to promote the delivery of biomolecules. Precisely, the novel formulation was fabricated by combining dextran methacrylate (DEX-MA) and polyethylene glycol dimethacrylate (PEG-DMA) through radical polymerization at a temperature of -15 °C. The swelling, porosity, mechanical properties, and the drug release profile of vitamin B12 from the optimized cryogel were evaluated and compared to hydrogels fabricated at room temperature. The use of the cryo-gelation technique enabled the formation of scaffolds with improved swelling, increased interconnected porosity, and higher mechanical resistance than conventional hydrogels. The cryogels proved to be non-toxic and suitable carriers for the delivery of water-soluble biomolecules. Overall, the novel cytocompatible cryogel formulation could be used for biomedical applications that require the need of a macroporous scaffold for localized delivery of bioactive molecules.


Asunto(s)
Criogeles/química , Dextranos/química , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química , Andamios del Tejido/química , Adulto , Humanos , Hidrogeles/química , Persona de Mediana Edad , Vitamina B 12/farmacología
12.
Pharmaceutics ; 12(9)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872207

RESUMEN

Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed. One possible way to overcome all these problems could be the addition of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to the GG-Gly formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated. In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-ß-CD, fluconazole and complex fluconazole/HP-ß-CD in the swelling film. Experimental results, supported by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-ß-CD represent a suitable formulation for fluconazole drug delivery. A sustained release was observed when GG-Gly film is loaded with a preformed complex fluconazole/HP-ß-CD.

13.
Artículo en Inglés | MEDLINE | ID: mdl-32793572

RESUMEN

The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m. The results are supported by multiphysics simulations which consider the coupling of three physics (electromagnetics, thermal and pore kinetics) in order to explain the occurring physical interactions at the microscopic level and provide useful information on the characteristics of the train of pulses needed to obtain quantitative results in terms of liposome electropermeabilization. Finally, a complete characterization of the exposure system is also provided to support the reliability and validity of the study.

14.
Int J Pharm ; 585: 119471, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32479896

RESUMEN

PEG-DMA was incorporated in unilamellar liposomes. PEG-DMA crosslinking by photo-induced radical reaction transforms the liquid aqueous core of the liposome into a hydrogel. The molecular weight of PEG-DMA significantly influences both structural and release properties of these hybrid nanosystems, by affecting both membrane permeability and diffusional properties of the inner core. Release studies of 5-(6) carboxyfluorescein from Conventional Liposomes (CL) and Gel-in-Liposome (GiL) systems were carried out in a vertical Franz Diffusion Cell. A detailed transport model is proposed, aimed at describing the entire drug diffusive pathway from the vesicles' inner core, through the double-layer membrane, into the buffer solution in the donor chamber of the Franz Cell and from there to the receptor chamber, where withdrawals are performed to evaluate the released drug concentration. The model permits to give a quantitative estimate of the diffusional resistances offered by the inner core (liquid or gelled) and by the double-layer membrane for CLs and different GiLs systems. The theoretical analysis of experimental release data strongly supports the basic assumption that, by varying the molecular weight of PEG-DMA, a different arrangement of the polymer within the liposomal structure and a different interaction with the membrane occur. PEG750-DMA decreases the transport resistance of the double layer membrane with respect to CLs, while PEG4000-DMA plays the opposite role. After gelation of the internal core, the diffusional resistance to drug transport inside GiLs becomes controlling, thus significantly slowing down drug release from these systems. Therefore, the combination of PEG-DMA with phospholipid vesicles appears an interesting strategy to develop sustained drug delivery systems.


Asunto(s)
Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Fluoresceínas/farmacocinética , Metacrilatos/química , Polietilenglicoles/química , Liposomas Unilamelares/química , Línea Celular , Permeabilidad de la Membrana Celular , Supervivencia Celular , Colesterol/química , Liberación de Fármacos , Hidrogeles/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Peso Molecular , Fosfatidilcolinas/química
15.
ACS Appl Bio Mater ; 3(2): 945-951, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35019296

RESUMEN

Gellan gum-based hydrogels display limited cell adhesion ability due to the absence of cell-anchorage points usually present in proteins found in the extracellular matrix (ECM). This issue limits their use in the biomedical field as scaffolds to promote tissue repair. Our work addresses this challenge by investigating the use of polydopamine (pDA) as a bioactive layer to improve the surface and biological properties of gellan gum-based hydrogels cross-linked using carbodiimide chemistry. Upon treatment with a pDA layer, the hydrogel displayed an increase in wettability and swelling properties. This change in physical properties had a direct impact on the biological properties of the scaffolds. Precisely, human adipose-derived stem cells (hASCs) seeded on the pDA coated gellan gum hydrogels displayed larger cell area, increased proliferation rate, and enhanced gene expression of focal adhesion and cytoskeletal proteins. Overall, the findings of this research support the use of pDA coating as a possible approach to improve the biological features of gellan gum-based scaffolds and modulate stem cell morphology and proliferation.

16.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138099

RESUMEN

Lavandin essential oil (LEO), a natural sterile hybrid obtained by crossbreeding L. angustifolia × L. latifolia, is mainly composed by active components belonging to the family of terpenes endowed with relevant anti-proliferative activity, which can be enhanced by proper application of nanotechnology. In particular, this study reports the chemical characterization and the screening of the anti-proliferative activity on different human cell lines of pure and nano-formulated lavandin essential oil (EO). LEO and its formulation (NanoLEO) were analyzed by HS/GC-MS (Headspace/Gas Chromatography-Mass Spectrometry) to describe and compare their chemical volatile composition. The most abundant compounds were linalool and 1,8-cineole (LEO: 28.6%; 27.4%) (NanoLEO: 60.4%; 12.6%) followed by α-pinene (LEO: 9.6%; NanoLEO: 4.5%), camphor (LEO: 6.5%; NanoLEO: 7.0%) and linalyl acetate (LEO: 6.5%; NanoLEO: 3.6%). The cytotoxic effects of LEO and NanoLEO were investigated on human neuroblastoma cells (SHSY5Y), human breast adenocarcinoma cells (MCF-7), human lymphoblastic leukemia cells (CCRF CEM), human colorectal adenocarcinoma cells (Caco-2) and one normal breast epithelial cell (MCF10A) by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)-assay. Caco-2, MCF7 and MCF10A normal cells resulted more resistant to the treatment with LEO, while CCRF-CEM and SHSY5Y cells were more sensitive. The antiproliferative effect of LEO resulted amplified when the essential oil was supplied as nanoformulation, mainly in Caco-2 cells. Scanning and transmission electron microscopy investigations were carried out on Caco-2 cells to outline at ultrastructural level possible affections induced by LEO and NanoLEO treatments.

17.
Int J Pharm ; 585: 119467, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32497730

RESUMEN

Since the application of nanotechnology to drug delivery, both polymer-based and lipid-based nanocarriers have demonstrated clinical benefits, improving both drug efficacy and safety. However, to further address the challenges of the drug delivery field, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymer-based and lipid-based delivery systems in a single nanocarrier. Within this scenario, this work is aimed at developing novel hybrid vesicles following the recent strategy of modifying the internal structure of liposomes. Specifically, polyethylene glycol-dimethacrylate (PEG-DMA, molecular weight 750 or 4000), was entrapped within unilamellar liposomes made of hydrogenated soybean phosphatidylcholine/cholesterol, and photo-crosslinked, in order to transform the aqueous inner core of liposomes into a soft and elastic hydrogel. After appropriate optimization of the preparation and gelation procedures, the primary objective of this work was to analyze the effect of the molecular weight of PEG-DMA on the main properties of these Gel-in-Liposome (GiL) systems. Indeed, by varying the molecular weight of PEG-DMA also its hydrophilic/lipophilic balance was modified and different arrangements of the polymer within the structure of liposomes as well as different interaction with their membrane were obtained. Both polymers were found in the inner core of the liposomes, however, the more hydrophobic PEG750-DMA also formed localized clusters within the liposome membrane, whereas the more hydrophilic PEG4000-DMA formed a polymeric corona on the vesicle surface. Preliminary cytotoxicity studies were also performed to evaluate the biological safety of these GiL systems and their suitability as innovative materials drug delivery application.


Asunto(s)
Química Farmacéutica/métodos , Liposomas/química , Metacrilatos/química , Polietilenglicoles/química , Línea Celular , Supervivencia Celular , Colesterol/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Hidrogeles/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Peso Molecular , Fosfatidilcolinas/química
18.
Pharmaceutics ; 11(4)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999609

RESUMEN

In this study, gellan gum (GG), a natural polysaccharide, was used to fabricate spherical porous beads suitable as sustained drug delivery systems for oral administration. GG was cross-linked with calcium ions to prepare polymeric beads. Rheological studies and preliminary experiments of beads preparation allowed to identify the GG and the CaCl2 concentrations suitable for obtaining stable and spherical particles. GG beads were formed, through ionotropic gelation technique, with and without the presence of the synthetic clay laponite. The resultant beads were analyzed for dimensions (before and after freeze-drying), morphological aspects and ability to swell in different media miming biological fluids, namely SGF (Simulated Gastric Fluid, HCl 0.1 M) and SIF (Simulated Intestinal Fluid, phosphate buffer, 0.044 M, pH 7.4). The swelling degree was lower in SGF than in SIF and further reduced in the presence of laponite. The GG and GG-layered silicate composite beads were loaded with two model drugs having different molecular weight, namely theophylline and cyanocobalamin (vitamin B12) and subjected to in-vitro release studies in SGF and SIF. The presence of laponite in the bead formulation increased the drug entrapment efficiency and slowed-down the release kinetics of both drugs in the gastric environment. A moving-boundary swelling model with "diffuse" glassy-rubbery interface was proposed in order to describe the swelling behavior of porous freeze-dried beads. Consistently with the swelling model adopted, two moving-boundary drug release models were developed to interpret release data from highly porous beads of different drugs: drug molecules, e.g., theophylline, that exhibit a typical Fickian behavior of release curves and drugs, such as vitamin B12, whose release curves are affected by the physical/chemical interaction of the drug with the polymer/clay complex. Theoretical results support the experimental observations, thus confirming that laponite may be an effective additive for fabricating sustained drug delivery systems.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1678-1681, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946219

RESUMEN

The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility of controlling drug release from liposomes mediated by nanosecond pulsed electric fields.


Asunto(s)
Electricidad , Estudios de Factibilidad , Liposomas , Nanotecnología , Fosfolípidos
20.
Food Chem ; 268: 49-56, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30064788

RESUMEN

Fruits of Lycium barbarum L. have been used in Chinese traditional medicine for centuries. In the last decade, there has been much interest in the potential health benefits of many biologically constituents of these fruits. The high level of carotenoids offers protection against development of cardiovascular diseases, diabetes and related comorbidities. In the present work two different selections of Lycium barbarum L., cultivated in Italy and coming from three discrete harvest stages, were subjected to two different grinding procedure and to a simplified extraction method of carotenoid component. CIELAB colorimetric analysis of the freshly prepared purees and HPLC-DAD analysis of carotenoid extracts were performed and compared. Different harvesting dates and grinding procedures deeply influence the carotenoids content and statistical analysis showed high correlation between carotenoid content and colorimetric data. The final model provides a reliable tool to directly assess carotenoid content by performing cheap and routinely colorimetric analyses for food industry.


Asunto(s)
Carotenoides/análisis , Lycium/química , Calorimetría , Cromatografía Líquida de Alta Presión , Frutas/química , Humanos , Medicina Tradicional China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA