Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 26(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946509

RESUMEN

The simultaneous determination of chemical vapor-generating elements involving derivatization is difficult even by inductively coupled plasma optical emission spectrometry or mass spectrometry. This study proposes a new direct liquid microsampling method for the simultaneous determination of As, Bi, Se, Te, Hg, Pb, and Sn, using a fully miniaturized set-up based on electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry. The method is cost-effective, free from non-spectral interference, and easy to run by avoiding derivatization. The method involves the vaporization of analytes from the 10 µL sample and recording of episodic spectra generated in low-power (15 W) and low-Ar consumption (150 mL min-1) plasma microtorch interfaced with low-resolution microspectrometers. Selective vaporization at 1300 °C ensured the avoidance of non-spectral effects and allowed the use of external calibration. Several spectral lines for each element even in the range 180-210 nm could be selected. Generally, this spectral range is examined with large-scale instrumentation. Even in the absence of derivatization, the obtained detection limits were low (0.02-0.75 mg kg-1) and allowed analysis of environmental samples, such as cave and river sediments. The recovery was in the range of 86-116%, and the accuracy was better than 10%. The method is of general interest and could be implemented on any miniaturized or classical laboratory spectrometric instrumentation.

2.
Micromachines (Basel) ; 15(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398975

RESUMEN

This paper reviews the evolution of methodologies and tools for modeling, simulation, and design of digital electronic system-on-chip (SoC) implementations, with a focus on industrial electronics applications. Key technological, economic, and geopolitical trends are presented at the outset, before reviewing SoC design methodologies and tools. The fundamentals of SoC design flows are laid out. The paper then exposes the crucial role of the intellectual property (IP) industry in the relentless improvements in performance, power, area, and cost (PPAC) attributes of SoCs. High abstraction levels in design capture and increasingly automated design tools (e.g., for verification and validation, synthesis, place, and route) continue to push the boundaries. Aerospace and automotive domains are included as brief case studies. This paper also presents current and future trends in SoC design and implementation including the rising, evolution, and usage of machine learning (ML) and artificial intelligence (AI) algorithms, techniques, and tools, which promise even greater PPAC optimizations.

3.
Talanta ; 217: 121067, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32498880

RESUMEN

An analytical method for the quantification of total Hg and CH3Hg+ in biological tissues (fish, mushroom) and water sediment was developed based on small-sized electrothermal vaporization capacitively coupled plasma microtorch optical emission spectrometry using a low-resolution microspectrometer as detector. Sample preparation was carried out according to the procedure recommended by JRC Technical Report of European Commission for the determination of CH3Hg+ in seafood and adapted by us for lower consumption of reagents. Amounts of 0.1 - 0.5 g sample were subjected to extraction in 5 ml of 47% HBr then CH3Hg+ was extracted in 2 × 1 ml toluene and back-extracted in 2 ml aqueous solution of 1% l-cysteine. Total Hg/CH3Hg+ were quantified in 10 µl of acidic extract/l-cysteine solution after electrothermal vaporization and measurement of 253.652 nm Hg signal in the episodic emission spectra. Under the optimal working conditions of system (70 °C sample drying, 1300 °C sample vaporization, 10 W plasma power and 150 ml min-1 Ar flow) the limits of detection were 7.0 µg kg-1 total Hg and 3.5 µg kg-1 CH3Hg+. Comparison of slopes in external calibration and standard addition procedure revealed the lack of non-spectral interferences of multimineral matrix, so that the calibration against Hg2+ standards was adopted. Pooled recovery of total mercury/methylmercury was 101 ± 7%/100 ± 7%, while precision assessed from measurements of real samples was in the range 1.6-9.6%/2.7-12.8%. The proposed method validated according to Eurachem Guide 2014 is selective and complies with demands in European legislation (Decisions 657/2002; 333/2007; 836/2011) and Association of Official Analytical Chemists Guide in terms of performances for food control. The method displays a high degree of greenness by circumventing cold vapor generation, use of small amounts of reagents and full-miniaturized instrumentation resulting in low analytical costs without reducing results quality. Besides, the method is simple and rapid, since it uses external calibration curves prepared from Hg2+standard solutions both for total Hg and CH3Hg+ determination.

4.
Talanta ; 170: 464-472, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501197

RESUMEN

A non-chromatographic method based on double liquid-liquid extraction and measurements by UV photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry was developed and characterized for methylmercury determination in seafood. Samples were prepared following the procedure recommended in JRC Technical Report of European Commission formerly proposed for the determination of methylmercury in seafood by thermal decomposition atomic absorption spectrometry, namely confinement of Hg species in 47% HBr solution, extraction of CH3Hg+ in toluene and back-extraction in 1% l-cysteine aqueous solution. Mercury cold vapor was generated by flow injection UV photo-reduction from CH3Hg+ in 0.6molL-1 HCOOH, while quantification was performed against external Hg2+ aqueous standards and measuring Hg 253.652nm emission using a low power/Ar consumption plasma microtorch (15W, 100mLmin-1) and a low resolution microspectrometer (Ocean Optics). The figures of merit and analytical capability were assessed by analyzing certified reference materials and test samples of fish fillet and discussed in relation with requirements for Hg determination in seafood in European legislation (Decisions 2007/333/EC and 2002/657/EC) as well as compared to performances achieved in thermal decomposition atomic absorption spectrometry. The limit of detection and quantification of 2µgkg-1 and 6µgkg-1 respectively, precision of 2.7-9.4% and accuracy of 99±8% of the proposed method for the determination of CH3Hg+ fulfill the demands of European legislation for Hg quantification. The limit of detection and quantification were better than those in the used reference method or other non-/chromatographic methods taken for comparison. The analysis of certified reference materials and the Bland and Altman test performed on 12 test samples confirmed trueness of the proposed method and its reliability for the determination of traces of CH3Hg+ with 95% confidence level. The proposed method fulfills several demands of the eco-scale concept, is sensitive, simple and safe related to sample preparation through elimination of classical, harmful reductants and attractive by using economical miniaturized instrumentation incorporating a low power and low Ar consumption plasma.


Asunto(s)
Análisis de los Alimentos/métodos , Compuestos de Metilmercurio/análisis , Alimentos Marinos/análisis , Espectrofotometría Atómica/métodos , Contaminantes Químicos del Agua/análisis , Animales , Diseño de Equipo , Peces , Análisis de los Alimentos/instrumentación , Límite de Detección , Reproducibilidad de los Resultados , Espectrofotometría Atómica/instrumentación
5.
Talanta ; 129: 72-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25127566

RESUMEN

A low power and low argon consumption (13.56 MHz, 15 W, 150 ml min(-1)) capacitively coupled plasma microtorch interfaced with a low-resolution microspectrometer and a small-sized electrothermal vaporization Rh coiled-filament as liquid microsample introduction device into the plasma was investigated for the simultaneous determination of several volatile elements of interest for environment. Constructive details, spectral and analytical characteristics, and optimum operating conditions of the laboratory equipment for the simultaneous determination of Ag, Cd, Cu, Pb and Zn requiring low vaporization power are provided. The method involves drying of 10 µl sample at 100°C, vaporization at 1500°C and emission measurement by capture of 20 successive spectral episodes each at an integration time of 500 ms. Experiments showed that emission of elements and plasma background were disturbed by the presence of complex matrix and hot Ar flow transporting the microsample into plasma. The emission spectrum of elements is simple, dominated by the resonance lines. The analytical system provided detection limits in the ng ml(-1) range: 0.5(Ag); 1.5(Cd); 5.6(Cu); 20(Pb) and 3(Zn) and absolute detection limits of the order of pg: 5(Ag); 15(Cd); 56(Cu); 200(Pb) and 30(Zn). It was demonstrated the utility and capability of the miniaturized analytical system in the simultaneous determination of elements in soil and water sediment using the standard addition method to compensate for the non-spectral effects of alkali and earth alkaline elements. The analysis of eight certified reference materials exhibited reliable results with recovery in the range of 95-108% and precision of 0.5-9.0% for the five examined elements. The proposed miniaturized analytical system is attractive due to the simple construction of the electrothermal vaporization device and microtorch, low costs associated to plasma generation, high analytical sensitivity and easy-to-run for simultaneous multielemental analysis of liquid microsamples.


Asunto(s)
Electroquímica/métodos , Espectrofotometría Atómica/métodos , Oligoelementos/análisis , Cadmio/análisis , Cobre/análisis , Sedimentos Geológicos/química , Plomo/análisis , Límite de Detección , Óptica y Fotónica , Reproducibilidad de los Resultados , Plata/análisis , Contaminantes del Suelo/análisis , Temperatura , Volatilización , Zinc/análisis
6.
Talanta ; 109: 84-90, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23618143

RESUMEN

A sensitive method using a miniature analytical system with a capacitively coupled plasma microtorch (25 W, 13.56 MHz, 0.4 l min(-1) Ar) was developed and evaluated for the determination of As and Sb in recyclable plastics and biodegradable materials by hydride generation optical emission spectrometry. Given their toxicity, As and Sb should be subject to monitoring in such materials despite not being included within the scope of Restriction of Hazardous Substances Directive. The advantages of the proposed approach are better detection limits and lower analysis cost relative to conventional systems based on inductively coupled plasma optical emission and flame atomic absorption spectrometry with/without derivatization. Samples were subjected to acidic microwave-assisted digestion in a nitric-sulfuric acid mixture. Chemical hydride generation with 0.5% NaBH4 after the prereduction of As(V) and Sb(V) with 0.3% L-cysteine in 0.01 mol l(-1) HCl (10 min contact time at 90±5°C) was used. Under the optimal hydride generation conditions and analytical system operation the detection limits (mg kg(-1)) were 0.5 (As) and 0.1 (Sb), whereas the precision was 0.4-7.1% for 10.2-46.2 mg kg(-1) As and 0.4-3.2% for 7.1-156 mg kg(-1) Sb. Analysis of two polyethylene CRMs revealed recoveries of 101±2% As and 100±1% Sb.


Asunto(s)
Antimonio/análisis , Arsénico/análisis , Polietilenos/química , Espectrofotometría Atómica/métodos , Biodegradación Ambiental , Diseño de Equipo , Límite de Detección , Reciclaje , Reproducibilidad de los Resultados , Espectrofotometría Atómica/instrumentación
7.
Food Chem ; 141(4): 3621-6, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23993529

RESUMEN

A method for Li determination in drinking water using atomic emission spectrometry in a new low-power Ar capacitively coupled plasma microtorch (15 W, 0.6 L min(-1)) with a detection limit of 0.013 µg L(-1) was developed. The method is based on external calibration in the presence of a buffering solution containing 5 mg L(-1) Na, K, Ca, Mg added both to calibration standards and water samples. The statistical validation on 31 bottled drinking water samples (0.4-2140 µg L(-1) Li) using the Bland and Altman test and regression analysis has shown results similar to those obtained by the standard additions method. The buffering solution approach is simpler than the standard additions and has demonstrated good intra- and interday precision, accuracy and robustness. It was successfully applied over a wide concentration range of Li and multimineral matrix with a pooled precision of 2.5-3.5% and 99±9% accuracy.


Asunto(s)
Agua Potable/análisis , Litio/análisis , Microespectrofotometría/métodos , Espectrofotometría Atómica/métodos , Contaminantes Químicos del Agua/análisis , Límite de Detección , Microespectrofotometría/instrumentación , Espectrofotometría Atómica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA