Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Opt Express ; 32(9): 15597-15609, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859207

RESUMEN

The dielectric function and interband critical points of compressively strained ferroelectric K0.85Na0.15NbO3 thin film grown by metal-organic vapor phase epitaxy (MOVPE) are studied in broad spectral and temperature ranges by spectroscopic ellipsometry (SE). The temperature dependence of the measured pseudodielectric functions is strongly affected by a structural phase transition from the monoclinic Mc-phase to the orthorhombic c-phase at about 428 K. Using a parametric optical constant model, the corresponding dielectric functions as well as the interband optical transitions of the film are determined in the spectral range of 0.73-6.00 eV. Standard critical point (SCP) analysis of the 2nd derivatives of the dielectric functions identified three and four critical points for monoclinic and orthorhombic symmetries, respectively. A systematic redshift of the threshold energies with increasing temperatures was observed.

2.
J Exp Bot ; 74(21): 6847-6859, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37681745

RESUMEN

The regulation of water loss and the spread of xylem embolism have mostly been considered separately. The development of an integrated approach taking into account the temporal dynamics and relative contributions of these mechanisms to plant drought responses is urgently needed. Do conifer species native to mesic and xeric environments display different hydraulic strategies and temporal sequences under drought? A dry-down experiment was performed on seedlings of four conifer species differing in embolism resistance, from drought-sensitive to extremely drought-resistant species. A set of traits related to drought survival was measured, including turgor loss point, stomatal closure, minimum leaf conductance, and xylem embolism resistance. All species reached full stomatal closure before the onset of embolism, with all but the most drought-sensitive species presenting large stomatal safety margins, demonstrating that highly drought-resistant species do not keep their stomata open under drought conditions. Plant dry-down time to death was significantly influenced by the xylem embolism threshold, stomatal safety margin, and minimum leaf conductance, and was best explained by the newly introduced stomatal margin retention index (SMRIΨ50) which reflects the time required to cross the stomatal safety margin. The SMRIΨ50 may become a key tool for the characterization of interspecific drought survival variability in trees.


Asunto(s)
Embolia , Tracheophyta , Estomas de Plantas/fisiología , Sequías , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Agua/fisiología , Árboles/fisiología , Xilema/fisiología
3.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36362358

RESUMEN

In this work, the effects of femtosecond laser irradiation and doping with plasmonic gold nanorods on the degree of conversion (DC) of a urethane dimethacrylate (UDMA)-triethylene glycol dimethacrylate (TEGDMA) nanocomposite were investigated. The UDMA-TEGDMA photopolymer was prepared in a 3:1 weight ratio and doped with dodecanethiol- (DDT) capped gold nanorods of 25 × 75 or 25 × 85 nm nominal diameter and length. It was found that the presence of the gold nanorods alone (without direct plasmonic excitation) can increase the DC of the photopolymer by 6-15%. This increase was found to be similar to what could be achieved with a control heat treatment of 30 min at 180 °C. It was also shown that femtosecond laser impulses (795 nm, 5 mJ pulse energy, 50 fs pulse length, 2.83 Jcm-2 fluence), applied after the photopolymerization under a standard dental curing lamp, can cause a 2-7% increase in the DC of undoped samples, even after thermal pre-treatment. The best DC values (12-15% increase) were obtained with combined nanorod doping and subsequent laser irradiation close to the plasmon resonance peak of the nanorods (760-800 nm), which proves that the excited plasmon field can directly facilitate double bond breakage (without thermoplasmonic effects due to the short pulse length) and increase the crosslink density independently from the initial photopolymerization process.


Asunto(s)
Nanocompuestos , Nanotubos , Oro , Rayos Láser
4.
Anal Chem ; 93(2): 981-991, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33315391

RESUMEN

Mid-infrared (IR) ellipsometry of thin films and molecule layers at solid-liquid interfaces has been a challenge because of the absorption of light in water. It has been usually overcome by using configurations utilizing illumination through the solid substrate. However, the access to the solid-liquid interface in a broad spectral range is also challenging due to the limited transparency of most structural materials in the IR wavelength range. In this work, we propose a concept of a microfabricated analysis cell based on an IR-transparent Si membrane with advantages of a robust design, flexible adaptation to existing equipment, small volume, multiple-angle capabilities, broad wavelength range, and opportunities of multilayer applications for adjusted ranges of high sensitivity. The chamber was prepared by 3D micromachining technology utilizing deep reactive ion etching of a silicon-on-insulator wafer and bonded to a polydimethylsiloxane microfluidic injection system resulting in a cell volume of approximately 50 µL. The mechanical stability of the 2 and 5 µm-thick membranes was tested using different "backbone" reinforcement structures. It was proved that the 5 µm-thick membranes are stable at lateral cell sizes of 5 mm by 20 mm. The cell provides good intensity and adjustment capabilities on the stage of a commercial mid-IR ellipsometer. The membrane configuration also provides optical access to the sensing interfaces at a broad range of incident angles, which is a significant advantage in many potential sensing structure configurations, such as plasmonic, multilayer, 2D, or metamaterial applications.

5.
Opt Express ; 24(5): 4812-4823, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092309

RESUMEN

Plasmon-enhanced in situ spectroscopic ellipsometry was realized using the Kretschmann geometry. A 10-µL flow cell was designed for multi-channel measurements using a semi-cylindrical lens. Dual-channel monitoring of the layer formation of different organic structures has been demonstrated on titania nanoparticle thin films supported by gold. Complex modeling capabilities as well as a sensitivity of ~40 pg/mm2 with a time resolution of 1 s was achieved. The surface adsorption was enhanced by the titania nanoparticles due to the larger specific surface and nanoroughness, which is consistent with our previous results on titanate nanotubes.

6.
Opt Express ; 22(20): 24678-88, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25322042

RESUMEN

Optical scatterometry is the state of art optical inspection technique for quality control in lithographic process. As such, any boost in its performance carries very relevant potential in semiconductor industry. Recently we have shown that coherent Fourier scatterometry (CFS) can lead to a notably improved sensitivity in the reconstruction of the geometry of printed gratings. In this work, we report on implementation of a CFS instrument, which confirms the predicted performances. The system, although currently operating at a relatively low numerical aperture (NA = 0.4) and long wavelength (633 nm) allows already the reconstruction of the grating parameters with nanometer accuracy, which is comparable to that of AFM and SEM measurements on the same sample, used as reference measurements. Additionally, 1 nm accuracy in lateral positioning has been demonstrated, corresponding to 0.08% of the pitch of the grating used in the actual experiment.

7.
Appl Opt ; 53(10): 1994-2000, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24787152

RESUMEN

We show that the interface between gold and thermally formed cuprous oxide, which emits terahertz radiation when illuminated with ultrafast femtosecond lasers, is in fact an AuCu/Cu2O interface due to the formation of the thermal diffusion alloy AuCu. The alloy enables the formation of a Schottky-barrier-like electric field near the interface which is essential to explain the THz emission from these samples. We confirm the formation of this AuCu layer by x-ray diffraction measurements, ellipsometry, and visual inspection. We determined the frequency-dependent complex refractive indices of the Cu2O and AuCu layer and verified them using reflection spectroscopy measurements. These refractive indices can be used for optimizing the thickness of Cu2O for maximum THz emission from these interfaces.

8.
Materials (Basel) ; 17(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473473

RESUMEN

Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the samples represented the full composition range of the binary MoO3/WO3 system. The electrochromic characteristics of the mixed oxide films were determined with simultaneous measurement of layer transmittance and applied electric current through the using organic propylene carbonate electrolyte cells in a conventional three-electrode configuration. Coloration efficiency data evaluated from the primary data plotted against the composition displayed a characteristic maximum at around 60% MoO3. Our combinatorial approach allows the localization of the maximum at 5% accuracy.

9.
Heliyon ; 10(3): e25271, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333814

RESUMEN

Color etching is a useful corrosive process, widely applied in metallography to study the microstructure of metals. To prove the existence of the previously hypothesized steady-state etching rate, in-situ investigations were performed with spectroscopic ellipsometry during the color etching of ferritic materials. Kinetic information regarding the refractive index, extinction coefficient, and layer thickness were used to calculate the steady-state layer buildup rate, which was 1.90 ± 0.15 nm/s for low-carbon steel and 0.99 ± 0.06 nm/s for cast iron owing to its better corrosion resistance. The presented methodology and findings could help understanding other processes that involve the development of layers on metallic surfaces.

10.
Plant Physiol Biochem ; 208: 108504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507841

RESUMEN

Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience.


Asunto(s)
Óxido Nítrico , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Plantas/metabolismo , Estrés Salino , Salinidad
11.
ACS Omega ; 8(4): 3684-3697, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743061

RESUMEN

Among the many available real-time characterization methods, ellipsometry stands out with the combination of high sensitivity and high speed as well as nondestructive, spectroscopic, and complex modeling capabilities. The thicknesses of thin films such as the complex dielectric function can be determined simultaneously with precisions down to sub-nanometer and 10-4, respectively. Consequently, the first applications of high- and low-temperature real-time ellipsometry have been related to the monitoring of layer growth and the determination of optical properties of metals, semiconductors, and superconductors, dating back to the late 1960s. Ellipsometry has been ever since a steady alternative of nonpolarimetric spectroscopies in applications where quantitative information (e.g., thickness, crystallinity, porosity, band gap, absorption) is to be determined in complex layered structures. In this article the main applications and fields of research are reviewed.

12.
Materials (Basel) ; 16(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37374387

RESUMEN

We determined the optimal composition of reactive magnetron-sputtered mixed layers of Titanium oxide and Tin oxide (TiO2-SnO2) for electrochromic purposes. We determined and mapped the composition and optical parameters using Spectroscopic Ellipsometry (SE). Ti and Sn targets were put separately from each other, and the Si-wafers on a glass substrate (30 cm × 30 cm) were moved under the two separated targets (Ti and Sn) in a reactive Argon-Oxygen (Ar-O2) gas mixture. Different optical models, such as the Bruggeman Effective Medium Approximation (BEMA) or the 2-Tauc-Lorentz multiple oscillator model (2T-L), were used to obtain the thickness and composition maps of the sample. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) has been used to check the SE results. The performance of diverse optical models has been compared. We show that in the case of molecular-level mixed layers, 2T-L is better than EMA. The electrochromic effectiveness (the change of light absorption for the same electric charge) of mixed metal oxides (TiO2-SnO2) that are deposited by reactive sputtering has been mapped too.

13.
Front Plant Sci ; 14: 1339201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283971

RESUMEN

Introduction: Pterocarya fraxinifolia (Poiret) Spach (Caucasian wingnut, Juglandaceae) is a relict tree species, and little is known about its tolerance to abiotic stress factors, including drought stress and heavy metal toxicity. In addition, salicylic acid (SA) has been shown to have a pivotal role in plant responses to biotic and abiotic stresses. Methods: The current study is focused on evaluating the impact of foliar application of SA in mediating Caucasian wingnut physiological and biochemical responses, including growth, relative water content (RWC), osmotic potential (Ψs), quantum yield (Fv/Fm), electrolyte leakage, lipid peroxidation, hydrogen peroxide, and antioxidant enzymes, to cadmium (Cd; 100 µM) and drought stress, as well as their interaction. Moreover, the antioxidant activity (e.g., ascorbate peroxidase, catalase, glutathione reductase, peroxidase, and superoxide dismutase activities) of the stressed trees was investigated. The study was conducted on 6-month-old seedlings under controlled environmental conditions in a greenhouse for 3 weeks. Results and discussion: Leaf length, RWC, Ψs, and Fv/Fm were decreased under all treatments, although the effect of drought stress was the most pronounced. An efficient antioxidant defense mechanism was detected in Caucasian wingnut. Moreover, SA-treated Caucasian wingnut plants had lower lipid peroxidation, as one of the indicators of oxidative stress, when compared to non-SA-treated groups, suggesting the tolerance of this plant to Cd stress, drought stress, and their combination. Cadmium and drought stress also changed the ion concentrations in Caucasian wingnut, causing excessive accumulation of Cd in leaves. These results highlight the beneficial function of SA in reducing the negative effects of Cd and drought stress on Caucasian wingnut plants.

14.
Front Plant Sci ; 14: 1089706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866386

RESUMEN

Introduction: Under ongoing climate change, more frequent and severe drought periods accompanied by heat waves are expected in the future. Under these conditions, the tree's survival is conditioned by fast recovery of functions after drought release. Therefore, in the presented study, we evaluated the effect of long-term water reduction in soil on tree water use and growth dynamics of Norway spruce. Methods: The experiment was conducted in two young Norway spruce plots located on suboptimal sites at a low altitude of 440 m a.s.l. In the first plot (PE), 25% of precipitation throughfall was excluded since 2007, and the second one represented the control treatment with ambient conditions (PC). Tree sap flow, stem radial increment, and tree water deficit were monitored in two consecutive growing seasons: 2015-2016, with contrasting hydro-climatic conditions. Results: Trees in both treatments showed relatively isohydric behavior reflected in a strong reduction of sap flow under the exceptional drought of 2015. Nevertheless, trees from PE treatment reduced sap flow faster than PC under decreasing soil water potential, exhibiting faster stomatal response. This led to a significantly lower sap flow of PE, compared to PC in 2015. The maximal sap flow rates were also lower for PE treatment, compared to PC. Both treatments experienced minimal radial growth during the 2015 drought and subsequent recovery of radial growth under the more the humid year of 2016. However, treatments did not differ significantly in stem radial increments within respective years. Discussion: Precipitation exclusion treatment, therefore, led to water loss adjustment, but did not affect growth response to intense drought and growth recovery in the year after drought.

15.
AoB Plants ; 15(4): plad047, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37560762

RESUMEN

The increasing evaporative demand due to climate change will significantly affect the balance of carbon assimilation and water losses of plants worldwide. The development of crop varieties with improved water-use efficiency (WUE) will be critical for adapting agricultural strategies under predicted future climates. This review aims to summarize the most important leaf morpho-physiological constraints of WUE in C3 plants and identify gaps in knowledge. From the carbon gain side of the WUE, the discussed parameters are mesophyll conductance, carboxylation efficiency and respiratory losses. The traits and parameters affecting the waterside of WUE balance discussed in this review are stomatal size and density, stomatal control and residual water losses (cuticular and bark conductance), nocturnal conductance and leaf hydraulic conductance. In addition, we discussed the impact of leaf anatomy and crown architecture on both the carbon gain and water loss components of WUE. There are multiple possible targets for future development in understanding sources of WUE variability in plants. We identified residual water losses and respiratory carbon losses as the greatest knowledge gaps of whole-plant WUE assessments. Moreover, the impact of trichomes, leaf hydraulic conductance and canopy structure on plants' WUE is still not well understood. The development of a multi-trait approach is urgently needed for a better understanding of WUE dynamics and optimization.

16.
Materials (Basel) ; 16(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37109838

RESUMEN

The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. This review focuses on recent results regarding the characteristics of different binary and ternary films prepared by direct current (DC) and radiofrequency (RF) sputtering using the micro-combinatorial technique. In addition to the 3 mm diameter TEM grid used for microstructural analysis, by scaling up the substrate size to 10 × 25 mm, this novel approach has allowed for a comprehensive study of the properties of the materials as a function of their composition, which has been determined via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry, and nanoindentation studies. Thanks to the micro-combinatory technique, the characterization of multicomponent layers can be studied in greater detail and efficiency than before, which is beneficial for both research and practical applications. In addition to new scientific advances, we will briefly explore the potential for innovation with respect to this new high-throughput concept, including the creation of two- and three-component thin film databases.

17.
Nat Commun ; 13(1): 6695, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335124

RESUMEN

Non-thermal and thermal carrier populations in plasmonic systems raised significant interest in contemporary fundamental and applied physics. Although the theoretical description predicts not only the energies but also the location of the generated carriers, the experimental justification of these theories is still lacking. Here, we demonstrate experimentally that upon the optical excitation of surface plasmon polaritons, a non-thermal electron population appears in the topmost domain of the plasmonic film directly coupled to the local fields. The applied all-optical method is based on spectroscopic ellipsometric determination of the dielectric function, allowing us to obtain in-depth information on surface plasmon induced changes of the directly related electron occupancies. The ultrahigh sensitivity of our method allows us to capture the signatures of changes induced by electron-electron scattering processes with ultrafast decay times. These experiments shed light on the build-up of plasmonic hot electron population in nanoscale media.

18.
Front Plant Sci ; 13: 903954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783975

RESUMEN

The cultivation of lemongrass (Cymbopogon flexuosus) crop is dominated by its medicinal, food preservative, and cosmetic demands. The growing economy of the lemongrass market suggests the immense commercial potential of lemongrass and its essential oil. Nevertheless, the continuous increase of the saline regime threatens the growth and productivity of most of the plant life worldwide. In this regard, the present experiment explores the salt sensitiveness of the lemongrass crop against five different levels of salt stress. Metabolomic analyses suggest that lemongrass plants can effectively tolerate a salt concentration of up to 80 mM and retain most of their growth and productivity. However, extreme NaCl concentrations (≥160 mM) inflicted significant (α = 0.05) damage to the plant physiology and exhausted the lemongrass antioxidative defence system. Therefore, the highest NaCl concentration (240 mM) minimised plant height, chlorophyll fluorescence, and essential oil production by up to 50, 27, and 45%. The overall data along with the salt implications on photosynthetic machinery and ROS metabolism suggest that lemongrass can be considered a moderately sensitive crop to salt stress. The study, sensu lato, can be used in reclaiming moderately saline lands with lemongrass cultivation converting such lands from economic liability to economic asset.

19.
Environ Pollut ; 310: 119855, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940485

RESUMEN

Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca2+, K+, Na+, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.


Asunto(s)
Antioxidantes , Nanopartículas , Reguladores del Crecimiento de las Plantas , Especies Reactivas de Oxígeno , Silicio
20.
Nat Nanotechnol ; 17(1): 61-66, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34782777

RESUMEN

Quantum confinement of the charge carriers of graphene is an effective way to engineer its properties. This is commonly realized through physical edges that are associated with the deterioration of mobility and strong suppression of plasmon resonances. Here, we demonstrate a simple, large-area, edge-free nanostructuring technique, based on amplifying random nanoscale structural corrugations to a level where they efficiently confine charge carriers, without inducing significant inter-valley scattering. This soft confinement allows the low-loss lateral ultra-confinement of graphene plasmons, scaling up their resonance frequency from the native terahertz to the commercially relevant visible range. Visible graphene plasmons localized into nanocorrugations mediate much stronger light-matter interactions (Raman enhancement) than previously achieved with graphene, enabling the detection of specific molecules from femtomolar solutions or ambient air. Moreover, nanocorrugated graphene sheets also support propagating visible plasmon modes, as revealed by scanning near-field optical microscopy observation of their interference patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA