Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Cell Biol ; 3(1): 43-9, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11146625

RESUMEN

The Drosophila protein Bazooka is required for both apical-basal polarity in epithelial cells and directing asymmetric cell division in neuroblasts. Here we show that the PDZ-domain protein DmPAR-6 cooperates with Bazooka for both of these functions. DmPAR-6 colocalizes with Bazooka at the apical cell cortex of epithelial cells and neuroblasts, and binds to Bazooka in vitro. DmPAR-6 localization requires Bazooka, and mislocalization of Bazooka through overexpression redirects DmPAR-6 to ectopic sites of the cell cortex. In the absence of DmPAR-6, Bazooka fails to localize apically in neuroblasts and epithelial cells, and is distributed in the cytoplasm instead. Epithelial cells lose their apical-basal polarity in DmPAR-6 mutants, asymmetric cell divisions in neuroblasts are misorientated, and the proteins Numb and Miranda do not segregate correctly into the basal daughter cell. Bazooka and DmPAR-6 are Drosophila homologues of proteins that direct asymmetric cell division in early Caenorhabditis elegans embryos, and our results indicate that homologous protein machineries may direct this process in worms and flies.


Asunto(s)
Proteínas Portadoras/metabolismo , División Celular/fisiología , Polaridad Celular/fisiología , Proteínas de Drosophila , Drosophila/embriología , Epitelio/embriología , Péptidos y Proteínas de Señalización Intracelular , Sistema Nervioso/embriología , Proteínas/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Drosophila/citología , Drosophila/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Hormonas Juveniles/metabolismo , Sistema Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas/genética
2.
J Cell Biol ; 154(3): 511-23, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11481346

RESUMEN

The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Polaridad Celular/fisiología , Clonación Molecular , Drosophila , Femenino , Proteínas de Insectos/análisis , Masculino , Microtúbulos/fisiología , Datos de Secuencia Molecular , Mutación/fisiología , Oocitos/citología , Oocitos/fisiología , Oogénesis/fisiología , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/metabolismo , Recombinación Genética/fisiología , Homología de Secuencia de Aminoácido
3.
Curr Biol ; 11(11): 901-6, 2001 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-11516655

RESUMEN

The anterior-posterior axis of C. elegans is defined by the asymmetric division of the one-cell zygote, and this is controlled by the PAR proteins, including PAR-3 and PAR-6, which form a complex at the anterior of the cell, and PAR-1, which localizes at the posterior [1-4]. PAR-1 plays a similar role in axis formation in Drosophila: the protein localizes to the posterior of the oocyte and is necessary for the localization of the posterior and germline determinants [5, 6]. PAR-1 has recently been shown to have an earlier function in oogenesis, where it is required for the maintenance of oocyte fate and the posterior localization of oocyte-specific markers [7, 8]. Here, we show that the homologs of PAR-3 (Bazooka) and PAR-6 are also required to maintain oocyte fate. Germline clones of mutants in either gene give rise to egg chambers that develop 16 nurse cells and no oocyte. Furthermore, oocyte-specific factors, such as Orb protein and the centrosomes, still localize to one cell but fail to move from the anterior to the posterior cortex. Thus, PAR-1, Bazooka, and PAR-6 are required for the earliest polarity in the oocyte, providing the first example in Drosophila where the three homologs function in the same process. Although these PAR proteins therefore seem to play a conserved role in early anterior-posterior polarity in C. elegans and Drosophila, the relationships between them are different, as the localization of PAR-1 does not require Bazooka or PAR-6 in Drosophila, as it does in the worm.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas Portadoras/metabolismo , Proteínas de Drosophila , Drosophila/fisiología , Proteínas de Insectos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Oogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Portadoras/genética , Diferenciación Celular , Polaridad Celular , Femenino , Proteínas de Insectos/genética , Oocitos/fisiología , Óvulo/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética
4.
Cell ; 107(2): 183-94, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11672526

RESUMEN

In Drosophila, distinct mechanisms orient asymmetric cell division along the apical-basal axis in neuroblasts and along the anterior-posterior axis in sensory organ precursor (SOP) cells. Here, we show that heterotrimeric G proteins are essential for asymmetric cell division in both cell types. The G protein subunit G(alpha)i localizes apically in neuroblasts and anteriorly in SOP cells before and during mitosis. Interfering with G protein function by G(alpha)i overexpression or depletion of heterotrimeric G protein complexes causes defects in spindle orientation and asymmetric localization of determinants. G(alpha)i is colocalized and associated with Pins, a protein that induces the release of the betagamma subunit and might act as a receptor-independent G protein activator. Thus, asymmetric activation of heterotrimeric G proteins by a receptor-independent mechanism may orient asymmetric cell divisions in different cell types.


Asunto(s)
Proteínas de Ciclo Celular , División Celular , Proteínas de Drosophila , Proteínas de Unión al GTP/metabolismo , Sistema Nervioso/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas del Citoesqueleto/metabolismo , Drosophila , Proteínas de Unión al GTP/fisiología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Insectos/metabolismo , Microscopía Fluorescente , Mitosis , Modelos Biológicos , Mutación , Neuronas/metabolismo , Neuropéptidos , Unión Proteica , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA