Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(11): 6023-6034, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132200

RESUMEN

Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.


Asunto(s)
Cerebelo/patología , Clorzoxazona/administración & dosificación , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Mitocondrias/patología , Degeneraciones Espinocerebelosas/genética , Adolescente , Animales , Animales Recién Nacidos , Línea Celular , Cerebelo/citología , Análisis Mutacional de ADN , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Mutación con Pérdida de Función , Ratones , Oocitos , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/tratamiento farmacológico , Degeneraciones Espinocerebelosas/patología , Transfección , Secuenciación del Exoma , Xenopus
2.
iScience ; 26(5): 106701, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37207277

RESUMEN

Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders.

3.
Biol Psychiatry ; 79(10): 814-822, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26248536

RESUMEN

BACKGROUND: Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. METHODS: Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. RESULTS: Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. CONCLUSIONS: Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD.


Asunto(s)
Miedo/fisiología , Consolidación de la Memoria/fisiología , Receptor de Serotonina 5-HT2C/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Estrés Psicológico/fisiopatología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/metabolismo , Electrochoque , Miedo/efectos de los fármacos , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Modelos Psicológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Restricción Física , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Trastornos por Estrés Postraumático/metabolismo
4.
J Clin Invest ; 125(11): 4186-95, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26457733

RESUMEN

Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.


Asunto(s)
Complejo de Proteínas Asociado a la Distrofina/química , Terapia Genética , Distrofia Muscular de Cinturas/terapia , Oligonucleótidos Antisentido/uso terapéutico , Ingeniería de Proteínas , Sarcoglicanos/genética , Animales , Codón sin Sentido/genética , Diafragma/metabolismo , Diafragma/patología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Exones , Fibrosis , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/terapia , Mutación , Miocardio/metabolismo , Miocardio/patología , Oligonucleótidos Antisentido/farmacología , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/química , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/metabolismo , Sarcoglicanos/biosíntesis , Sarcoglicanos/química , Sarcoglicanos/deficiencia , Sarcolema/metabolismo , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA