RESUMEN
Progression of glomerulosclerosis is associated with loss of podocytes with subsequent glomerular tuft instability. It is thought that a diminished number of podocytes may be able to preserve tuft stability through cell hypertrophy associated with cell cycle reentry. At the same time, reentry into the cell cycle risks podocyte detachment if podocytes cross the G1/S checkpoint and undergo abortive cytokinesis. In order to study cell cycle dynamics during chronic kidney disease (CKD) development, we used a FUCCI model (fluorescence ubiquitination-based cell cycle indicator) of mice with X-linked Alport Syndrome. This model exhibits progressive CKD and expresses fluorescent reporters of cell cycle stage exclusively in podocytes. With the development of CKD, an increasing fraction of podocytes in vivo were found to be in G1 or later cell cycle stages. Podocytes in G1 and G2 were hypertrophic. Heterozygous female mice, with milder manifestations of CKD, showed G1 fraction numbers intermediate between wild-type and male Alport mice. Proteomic analysis of podocytes in different cell cycle phases showed differences in cytoskeleton reorganization and metabolic processes between G0 and G1 in disease. Additionally, in vitro experiments confirmed that damaged podocytes reentered the cell cycle comparable to podocytes in vivo. Importantly, we confirmed the upregulation of PDlim2, a highly expressed protein in podocytes in G1, in a patient with Alport Syndrome, confirming our proteomics data in the human setting. Thus, our data showed that in the Alport model of progressive CKD, podocyte cell cycle distribution is altered, suggesting that cell cycle manipulation approaches may have a role in the treatment of various progressive glomerular diseases characterized by podocytopenia.
Asunto(s)
Nefritis Hereditaria , Podocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ciclo Celular , Progresión de la Enfermedad , Femenino , Humanos , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo , Podocitos/metabolismo , ProteómicaRESUMEN
The deposition of antipodocyte autoantibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN.
Asunto(s)
Glomerulonefritis Membranosa , Síndrome Nefrótico , Podocitos , Animales , Humanos , Ratones , Albúminas , Glomerulonefritis Membranosa/genética , Glomérulos Renales/patología , Síndrome Nefrótico/patología , Podocitos/patologíaRESUMEN
Injection of amniotic fluid stem cells ameliorates the acute phase of acute tubular necrosis in animals by promoting proliferation of injured tubular cells and decreasing apoptosis, but whether these stem cells could be of benefit in CKD is unknown. Here, we used a mouse model of Alport syndrome, Col4a5(-/-) mice, to determine whether amniotic fluid stem cells could modify the course of progressive renal fibrosis. Intracardiac administration of amniotic fluid stem cells before the onset of proteinuria delayed interstitial fibrosis and progression of glomerular sclerosis, prolonged animal survival, and ameliorated the decline in kidney function. Treated animals exhibited decreased recruitment and activation of M1-type macrophages and a higher proportion of M2-type macrophages, which promote tissue remodeling. Amniotic fluid stem cells did not differentiate into podocyte-like cells and did not stimulate production of the collagen IVa5 needed for normal formation and function of the glomerular basement membrane. Instead, the mechanism of renal protection was probably the paracrine/endocrine modulation of both profibrotic cytokine expression and recruitment of macrophages to the interstitial space. Furthermore, injected mice retained a normal number of podocytes and had better integrity of the glomerular basement membrane compared with untreated Col4a5(-/-) mice. Inhibition of the renin-angiotensin system by amniotic fluid stem cells may contribute to these beneficial effects. In conclusion, treatment with amniotic fluid stem cells may be beneficial in kidney diseases characterized by progressive renal fibrosis.
Asunto(s)
Riñón/patología , Nefritis Hereditaria/terapia , Sistema Renina-Angiotensina/fisiología , Trasplante de Células Madre/métodos , Líquido Amniótico/citología , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis/patología , Fibrosis/terapia , Inmunohistoquímica , Riñón/fisiopatología , Pruebas de Función Renal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Hereditaria/patología , Podocitos/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no ParamétricasRESUMEN
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGß1 and ITGß4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Factores de Transcripción/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Riñón , Células Madre Neoplásicas/metabolismo , Neoplasias Renales/genéticaRESUMEN
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
RESUMEN
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
RESUMEN
Thyroid hormone signaling plays an essential role in muscle development and function, in the maintenance of muscle mass, and in regeneration after injury, via activation of thyroid nuclear receptor alpha (THRA). A mouse model of resistance to thyroid hormone carrying a frame-shift mutation in the THRA gene (THRA-PV) is associated with accelerated skeletal muscle loss with aging and impaired regeneration after injury. The expression of nuclear orphan receptor chicken ovalbumin upstream promoter-factor II (COUP-TFII, or Nr2f2) persists during myogenic differentiation in THRA-PV myoblasts and skeletal muscle of aged THRA-PV mice and it is known to negatively regulate myogenesis. Here, we report that in murine myoblasts COUP-TFII interacts with THRA and modulates THRA binding to thyroid response elements (TREs). Silencing of COUP-TFII expression restores in vitro myogenic potential of THRA-PV myoblasts and shifts the mRNA expression profile closer to WT myoblasts. Moreover, COUP-TFII silencing reverses the transcriptomic profile of THRA-PV myoblasts and results in reactivation of pathways involved in muscle function and extracellular matrix remodeling/deposition. These findings indicate that the persistent COUP-TFII expression in THRA-PV mice is responsible for the abnormal muscle phenotype. In conclusion, COUP-TFII and THRA cooperate during post-natal myogenesis, and COUP-TFII is critical for the accelerated skeletal muscle loss with aging and impaired muscle regeneration after injury in THRA-PV mice.
Asunto(s)
Factor de Transcripción COUP II/metabolismo , Desarrollo de Músculos , Enfermedades Musculares/etiología , Receptores alfa de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/etiología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/complicaciones , Síndrome de Resistencia a Hormonas Tiroideas/metabolismo , TranscriptomaRESUMEN
Kidney glomerulosclerosis commonly progresses to end-stage kidney failure, but pathogenic mechanisms are still poorly understood. Here, we show that podocyte expression of decay-accelerating factor (DAF/CD55), a complement C3 convertase regulator, crucially controls disease in murine models of adriamycin (ADR)-induced focal and segmental glomerulosclerosis (FSGS) and streptozotocin (STZ)-induced diabetic glomerulosclerosis. ADR induces enzymatic cleavage of DAF from podocyte surfaces, leading to complement activation. C3 deficiency or prevention of C3a receptor (C3aR) signaling abrogates disease despite DAF deficiency, confirming complement dependence. Mechanistic studies show that C3a/C3aR ligations on podocytes initiate an autocrine IL-1ß/IL-1R1 signaling loop that reduces nephrin expression, causing actin cytoskeleton rearrangement. Uncoupling IL-1ß/IL-1R1 signaling prevents disease, providing a causal link. Glomeruli of patients with FSGS lack DAF and stain positive for C3d, and urinary C3a positively correlates with the degree of proteinuria. Together, our data indicate that the development and progression of glomerulosclerosis involve loss of podocyte DAF, triggering local, complement-dependent, IL-1ß-induced podocyte injury, potentially identifying new therapeutic targets.
Asunto(s)
Antígenos CD55/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Podocitos/metabolismo , Podocitos/patología , Citoesqueleto de Actina/metabolismo , Anciano , Animales , Antígenos CD55/deficiencia , Línea Celular Transformada , Activación de Complemento/inmunología , Complemento C3b/metabolismo , Diabetes Mellitus Experimental/patología , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Doxorrubicina/efectos adversos , Femenino , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/inmunología , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Especificidad de Órganos , Fosfolipasa D/metabolismo , Podocitos/ultraestructura , Receptores de Complemento/metabolismo , Transducción de SeñalRESUMEN
In this work we model the glomerular filtration barrier, the structure responsible for filtering the blood and preventing the loss of proteins, using human podocytes and glomerular endothelial cells seeded into microfluidic chips. In long-term cultures, cells maintain their morphology, form capillary-like structures and express slit diaphragm proteins. This system recapitulates functions and structure of the glomerulus, including permselectivity. When exposed to sera from patients with anti-podocyte autoantibodies, the chips show albuminuria proportional to patients' proteinuria, phenomenon not observed with sera from healthy controls or individuals with primary podocyte defects. We also show its applicability for renal disease modeling and drug testing. A total of 2000 independent chips were analyzed, supporting high reproducibility and validation of the system for high-throughput screening of therapeutic compounds. The study of the patho-physiology of the glomerulus and identification of therapeutic targets are also feasible using this chip.
Asunto(s)
Glomérulos Renales/metabolismo , Dispositivos Laboratorio en un Chip , Nefritis Hereditaria/metabolismo , Albúminas/metabolismo , Albuminuria/tratamiento farmacológico , Albuminuria/metabolismo , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Glomérulos Renales/química , Glomérulos Renales/efectos de los fármacos , Masculino , Nefritis Hereditaria/tratamiento farmacológico , Podocitos/química , Podocitos/metabolismoRESUMEN
Development of anti-human leukocyte antigen donor-specific antibodies (DSAs) is associated with antibody-mediated rejection (AMR) and reduced allograft survival in kidney transplant recipients. Whether changes in circulating lymphocytes anticipate DSA or AMR development is unclear. METHODS: We used time-of-flight mass cytometry to analyze prospectively collected peripheral blood mononuclear cells (PBMC) from pediatric kidney transplant recipients who developed DSA (DSA-positive recipients [DSAPOS], n = 10). PBMC were obtained at 2 months posttransplant, 3 months before DSA development, and at DSA detection. PBMC collected at the same time points posttransplant from recipients who did not develop DSA (DSA-negative recipients [DSANEG], n = 11) were used as controls. RESULTS: DSAPOS and DSANEG recipients had similar baseline characteristics and comparable frequencies of total B and T cells. Within DSAPOS recipients, there was no difference in DSA levels (mean fluorescence intensity [MFI]: 13 687 ± 4159 vs 11 375 ± 1894 in DSAPOSAMR-positive recipients (AMRPOS) vs DSAPOSAMR-negative recipients (AMRNEG), respectively; P = 0.630), C1q binding (5 DSAPOSAMRPOS [100%] vs 4 DSAPOSAMRNEG [80%]; P = 1.000), or C3d binding (3 DSAPOSAMRPOS [60%] vs 1 DSAPOSAMRNEG [20%]; P = 0.520) between patients who developed AMR and those who did not. However, DSAPOS patients who developed AMR (n = 5; 18.0 ± 3.6 mo post-DSA detection) had increased B cells with antibody-secreting (IgD-CD27+CD38+; P = 0.002) and memory (IgD-CD27+CD38-; P = 0.003) phenotypes compared with DSANEG and DSAPOSAMRNEG recipients at DSA detection. CONCLUSIONS: Despite the small sample size, our comprehensive phenotypic analyses show that circulating B cells with memory and antibody-secreting phenotypes are present at DSA onset, >1 year before biopsy-proven AMR in pediatric kidney transplant recipients.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Mature nephrons originate from a small population of uninduced nephrogenic progenitor cells (NPs) within the cap mesenchyme. These cells are characterized by the coexpression of SIX2 and CITED1. Many studies on mouse models as well as on human pluripotent stem cells have advanced our knowledge of NPs, but very little is known about this population in humans, since it is exhausted before birth and strategies for its direct isolation are still limited. Here we report an efficient protocol for direct isolation of human NPs without genetic manipulation or stepwise induction procedures. With the use of RNA-labeling probes, we isolated SIX2+ CITED1+ cells from human fetal kidney for the first time. We confirmed their nephrogenic state by gene profiling and evaluated their nephrogenic capabilities in giving rise to mature renal cells. We also evaluated the ability to culture these cells without complete loss of SIX2 and CITED1 expression over time. In addition to defining the gene profile of human NPs, this in vitro system facilitates studies of human renal development and provides a novel tool for renal regeneration and bioengineering purposes. Stem Cells Translational Medicine 2017;6:419-433.
Asunto(s)
Separación Celular/métodos , Nefronas/embriología , Células Madre/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Morfogénesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Células Madre/metabolismo , Factores de Tiempo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
The outcome of tissue engineered organ transplants depends on the capacity of the biomaterial to promote a pro-healing response once implanted in vivo. Multiple studies, including ours, have demonstrated the possibility of using the extracellular matrix (ECM) of animal organs as platform for tissue engineering and more recently, discarded human organs have also been proposed as scaffold source. In contrast to artificial biomaterials, natural ECM has the advantage of undergoing continuous remodeling which allows adaptation to diverse conditions. It is known that natural matrices present diverse immune properties when compared to artificial biomaterials. However, how these properties compare between diseased and healthy ECM and artificial scaffolds has not yet been defined. To answer this question, we used decellularized renal ECM derived from WT mice and from mice affected by Alport Syndrome at different time-points of disease progression as a model of renal failure with extensive fibrosis. We characterized the morphology and composition of these ECMs and compared their in vitro effects on macrophage activation with that of synthetic scaffolds commonly used in the clinic (collagen type I and poly-L-(lactic) acid, PLLA). We showed that ECM derived from Alport kidneys differed in fibrous protein deposition and cytokine content when compared to ECM derived from WT kidneys. Yet, both WT and Alport renal ECM induced macrophage differentiation mainly towards a reparative (M2) phenotype, while artificial biomaterials towards an inflammatory (M1) phenotype. Anti-inflammatory properties of natural ECMs were lost when homogenized, hence three-dimensional structure of ECM seems crucial for generating an anti-inflammatory response. Together, these data support the notion that natural ECM, even if derived from diseased kidneys promote a M2 protolerogenic macrophage polarization, thus providing novel insights on the applicability of ECM obtained from discarded organs as ideal scaffold for tissue engineering.
Asunto(s)
Matriz Extracelular/química , Riñón/química , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nefritis Hereditaria/inmunología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Colágeno Tipo I/química , Colágeno Tipo I/farmacología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Matriz Extracelular/ultraestructura , Humanos , Inmunohistoquímica , Inmunofenotipificación , Riñón/inmunología , Macrófagos/clasificación , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Fenotipo , Poliésteres/química , Poliésteres/farmacología , Cultivo Primario de Células , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
Over the past years, extracellular matrix (ECM) obtained from whole organ decellularization has been investigated as a platform for organ engineering. The ECM is composed of fibrous and nonfibrous molecules providing structural and biochemical support to the surrounding cells. Multiple decellularization techniques, including ours, have been optimized to maintain the composition, microstructure, and biomechanical properties of the native renal ECM that are difficult to obtain during the generation of synthetic substrates. There are evidences suggesting that in vivo implanted renal ECM has the capacity to induce formation of vasculature-like structures, but long-term in vivo transplantation and filtration activity by these tissue-engineered constructs have not been investigated or reported. Therefore, even if the process of renal decellularization is possible, the repopulation of the renal matrix with functional renal cell types is still very challenging. This review aims to summarize the current reports on kidney tissue engineering with the use of decellularized matrices and addresses the challenges in creating functional kidney units. Finally, this review discusses how future studies investigating cell-matrix interaction may aid the generation of a functional renal unit that would be transplantable into patients one day.
Asunto(s)
Riñón , Matriz Extracelular , Humanos , Medicina Regenerativa , Ingeniería de Tejidos , Andamios del TejidoRESUMEN
BACKGROUND: Extracellular matrix (ECM) scaffolds, obtained through detergent-based decellularization of native kidneys, represent the most promising platform for investigations aiming at manufacturing kidneys for transplant purposes. We previously showed that decellularization of the human kidney yields renal ECM scaffolds (hrECMs) that maintain their basic molecular components, are cytocompatible, stimulate angiogenesis, and show an intact innate vasculature. However, evidence that the decellularization preserves glomerular morphometric characteristics, physiological parameters (pressures and resistances of the vasculature bed), and biological properties of the renal ECM, including retention of important growth factors (GFs), is still missing. METHODS: To address these issues, we studied the morphometry and resilience of hrECMs' native vasculature with resin casting at electronic microscopy and pulse-wave measurements, respectively. Moreover, we determined the fate of 40 critical GFs post decellularization with a glass chip-based multiplex enzyme-linked immunosorbent assay array and in vitro immunofluorescence. RESULTS: Our method preserves the 3-dimensional conformation of the native glomerulus. Resin casting and pulse-wave measurements, showed that hrECMs preserves the microvascular morphology and morphometry, and physiological function. Moreover, GFs including vascular endothelial growth factor and its receptors are retained within the matrices. CONCLUSIONS: Our results indicate that discarded human kidneys are a suitable source of renal scaffolds because they maintain a well-preserved structure and function of the vasculature, as well as GFs that are fundamental to achieve a satisfying recellularization of the scaffold in vivo due to their angiogenic properties.
Asunto(s)
Matriz Extracelular , Hemodinámica , Péptidos y Proteínas de Señalización Intercelular/análisis , Glomérulos Renales , Microvasos , Andamios del Tejido , Molde por Corrosión , Matriz Extracelular/química , Matriz Extracelular/ultraestructura , Humanos , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/química , Glomérulos Renales/citología , Glomérulos Renales/ultraestructura , Microscopía Electrónica de Rastreo , Microvasos/química , Microvasos/fisiología , Microvasos/ultraestructura , Perfusión , Análisis por Matrices de Proteínas , Análisis de la Onda del Pulso , Receptores de Factores de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/análisisRESUMEN
Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies.