Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 26(9): 2163-2177, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30007561

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Previously, we showed strong huntingtin reduction and prevention of neuronal dysfunction in HD rodents using an engineered microRNA targeting human huntingtin, delivered via adeno-associated virus (AAV) serotype 5 vector with a transgene encoding an engineered miRNA against HTT mRNA (AAV5-miHTT). One of the challenges of rodents as a model of neurodegenerative diseases is their relatively small brain, making successful translation to the HD patient difficult. This is particularly relevant for gene therapy approaches, where distribution achieved upon local administration into the parenchyma is likely dependent on brain size and structure. Here, we aimed to demonstrate the translation of huntingtin-lowering gene therapy to a large-animal brain. We investigated the feasibility, efficacy, and tolerability of one-time intracranial administration of AAV5-miHTT in the transgenic HD (tgHD) minipig model. We detected widespread dose-dependent distribution of AAV5-miHTT throughout the tgHD minipig brain that correlated with the engineered microRNA expression. Both human mutant huntingtin mRNA and protein were significantly reduced in all brain regions transduced by AAV5-miHTT. The combination of widespread vector distribution and extensive huntingtin lowering observed with AAV5-miHTT supports the translation of a huntingtin-lowering gene therapy for HD from preclinical studies into the clinic.


Asunto(s)
Terapia Genética/métodos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Humanos , Enfermedad de Huntington/genética , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Porcinos Enanos , Expansión de Repetición de Trinucleótido/genética
2.
Gene Ther ; 25(6): 415-424, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30069004

RESUMEN

Recombinant adeno-associated virus (rAAV) has become the vector of choice for the development of novel human gene therapies. High-yield manufacturing of high-quality vectors can be achieved using the baculovirus expression vector system. However, efficient production of rAAV in this insect cell-based system requires a genetic redesign of the viral protein 1 (VP1) operon. In this study, we generated a library of rationally designed rAAV serotype 5 variants with modulations in the translation-initiation region of VP1 and investigated the potency of the resulting vectors. We found that the initiation strength at the VP1 translational start had downstream effects on the VP2/VP3 ratio. Excessive incorporation of VP3 into a vector type decreased potency, even when the VP1/VP2 ratio was in balance. Finally, we successfully generated a potent rAAV vector based on serotype 5 with a balanced VP1/VP2/VP3 stoichiometry.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Parvovirinae/genética , Proteínas Virales/genética , Baculoviridae/genética , Proteínas de la Cápside/genética , Dependovirus , Vectores Genéticos/uso terapéutico , Humanos , Operón/genética , Serogrupo , Proteínas Virales/uso terapéutico
3.
Mol Ther ; 25(8): 1831-1842, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28596114

RESUMEN

In the gene therapy field, re-administration of adeno-associated virus (AAV) is an important topic because a decrease in therapeutic protein expression might occur over time. However, an efficient re-administration with the same AAV serotype is impossible due to serotype-specific, anti-AAV neutralizing antibodies (NABs) that are produced after initial AAV treatment. To address this issue, we explored the feasibility of using chimeric AAV serotype 5 (AAV5ch) and AAV1 for repeated liver-targeted gene delivery. To develop a relevant model, we immunized animals with a high dose of AAV5ch-human secreted embryonic alkaline phosphatase (hSEAP) that generates high levels of anti-AAV5ch NAB. Secondary liver transduction with the same dose of AAV1-human factor IX (hFIX) in the presence of high levels of anti-AAV5ch NAB proved to be successful because expression/activity of both reporter transgenes was observed. This is the first time that two different transgenes are shown to be produced by non-human primate (NHP) liver after sequential administration of clinically relevant doses of both AAV5ch and AAV1. The levels of transgene proteins achieved after delivery with AAV5ch and AAV1 illustrate the possibility of both serotypes for liver targeting. Furthermore, transgene DNA and RNA biodistribution patterns provided insight into the potential cause of decrease or loss of transgene protein expression over time in NHPs.


Asunto(s)
Dependovirus/genética , Dependovirus/inmunología , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hepatocitos/metabolismo , Transducción Genética , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Biomarcadores , Reacciones Cruzadas/inmunología , Dependovirus/clasificación , Expresión Génica , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Humanos , Inmunidad Humoral , Hígado/metabolismo , Ratones , Primates , Distribución Tisular , Transgenes
4.
Mol Ther ; 24(6): 1100-1105, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26948440

RESUMEN

Recombinant adeno-associated viral vectors (rAAV) currently constitute a real therapeutic strategy for the sustained correction of diverse genetic conditions. Though a wealth of preclinical and clinical studies have been conducted with rAAV, the oncogenic potential of these vectors is still controversial, particularly when considering liver-directed gene therapy. Few preclinical studies and the recent discovery of incomplete wild-type AAV2 genomes integrated in human hepatocellular carcinoma biopsies have raised concerns on rAAV safety. In the present study, we have characterized the integration of both complete and partial rAAV2/5 genomes in nonhuman primate tissues and clinical liver biopsies from a trial aimed to treat acute intermittent porphyria. We applied a new multiplex linear amplification-mediated polymerase chain reaction (PCR) assay capable of detecting integration events that are originated throughout the rAAV genome. The integration rate was low both in nonhuman primates and patient's samples. Importantly, no integration clusters or events were found in genes previously reported to link rAAV integration with hepatocellular carcinoma development, thus showing the absence of genotoxicity of a systemically administered rAAV2/5 in a large animal model and in the clinical context.


Asunto(s)
Dependovirus/fisiología , Vectores Genéticos/administración & dosificación , Hígado/efectos de los fármacos , Porfiria Intermitente Aguda/terapia , Animales , Dependovirus/genética , Terapia Genética , Vectores Genéticos/efectos adversos , Humanos , Macaca fascicularis , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Transducción Genética , Integración Viral
5.
J Hepatol ; 65(4): 776-783, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27212246

RESUMEN

BACKGROUND & AIMS: Acute intermittent porphyria (AIP) results from porphobilinogen deaminase (PBGD) haploinsufficiency, which leads to hepatic over-production of the neurotoxic heme precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA) and the occurrence of neurovisceral attacks. Severe AIP is a devastating disease that can only be corrected by liver transplantation. Gene therapy represents a promising curative option. The objective of this study was to investigate the safety of a recombinant adeno-associated vector expressing PBGD (rAAV2/5-PBGD) administered for the first time in humans for the treatment of AIP. METHODS: In this phase I, open label, dose-escalation, multicenter clinical trial, four cohorts of 2 patients each received a single intravenous injection of the vector ranging from 5×10(11) to 1.8×10(13) genome copies/kg. Adverse events and changes in urinary PBG and ALA and in the clinical course of the disease were periodically evaluated prior and after treatment. Viral shedding, immune response against the vector and vector persistence in the liver were investigated. RESULTS: Treatment was safe in all cases. All patients developed anti-AAV5 neutralizing antibodies but no cellular responses against AAV5 or PBGD were observed. There was a trend towards a reduction of hospitalizations and heme treatments, although ALA and PBG levels remained unchanged. Vector genomes and transgene expression could be detected in the liver one year after therapy. CONCLUSIONS: rAAV2/5-PBGD administration is safe but AIP metabolic correction was not achieved at the doses tested in this trial. Notwithstanding, the treatment had a positive impact in clinical outcomes in most patients. LAY SUMMARY: Studies in an acute intermittent porphyria (AIP) animal model have shown that gene delivery of PBGD to hepatocytes using an adeno-associated virus vector (rAAV2/5-PBG) prevent mice from suffering porphyria acute attacks. In this phase I, open label, dose-escalation, multicenter clinical trial we show that the administration of rAAV2/5-PBGD to patients with severe AIP is safe but metabolic correction was not achieved at the doses tested; the treatment, however, had a positive but heterogeneous impact on clinical outcomes among treated patients and 2 out of 8 patients have stopped hematin treatment. CLINICAL TRIAL NUMBER: The observational phase was registered at Clinicaltrial.gov as NCT 02076763. The interventional phase study was registered at EudraCT as n° 2011-005590-23 and at Clinicaltrial.gov as NCT02082860.


Asunto(s)
Porfiria Intermitente Aguda , Ácido Aminolevulínico , Animales , Terapia Genética , Humanos , Hidroximetilbilano Sintasa , Ratones
6.
Mol Ther ; 21(1): 217-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23089734

RESUMEN

Overexpression of short hairpin RNA (shRNA) often causes cytotoxicity and using microRNA (miRNA) scaffolds can circumvent this problem. In this study, identically predicted small interfering RNA (siRNA) sequences targeting apolipoprotein B100 (siApoB) were embedded in shRNA (shApoB) or miRNA (miApoB) scaffolds and a direct comparison of the processing and long-term in vivo efficacy was performed. Next generation sequencing of small RNAs originating from shApoB- or miApoB-transfected cells revealed substantial differences in processing, resulting in different siApoB length, 5' and 3' cleavage sites and abundance of the guide or passenger strands. Murine liver transduction with adeno-associated virus (AAV) vectors expressing shApoB or miApoB resulted in high levels of siApoB expression associated with strong decrease of plasma ApoB protein and cholesterol. Expression of miApoB from the liver-specific LP1 promoter was restricted to the liver, while the H1 promoter-expressed shApoB was ectopically present. Delivery of 1 × 10(11) genome copies AAV-shApoB or AAV-miApoB led to a gradual loss of ApoB and plasma cholesterol inhibition, which was circumvented by delivering a 20-fold lower vector dose. In conclusion, incorporating identical siRNA sequences in shRNA or miRNA scaffolds results in differential processing patterns and in vivo efficacy that may have serious consequences for future RNAi-based therapeutics.


Asunto(s)
Apolipoproteína B-100/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/genética , Animales , Secuencia de Bases , Western Blotting , Colesterol/sangre , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Células HEK293 , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/química , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/química
7.
J Gene Med ; 15(6-7): 219-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658149

RESUMEN

BACKGROUND: Muscle represents an important tissue target for adeno-associated virus (AAV) vector-mediated gene transfer in muscular, metabolic or blood-related genetic disorders. However, several studies have demonstrated the appearance of immune responses against the transgene product after intramuscular AAV vector delivery that resulted in a limited efficacy of the treatment. Use of microRNAs that are specifically expressed in antigen-presenting cells (APCs) is a promising approach for avoiding those immune responses. Cellular mir-142-3p, which is APC-specific, is able to repress the translation of its target cellular transcripts by binding to a specific target sequences. METHODS: In the present study, we explored the potential of mir-142-3p specific target sequences with respect to reducing or abolishing immune responses directed against ovalbumin (OVA), a highly immunogenic protein, expressed as transgene and delivered by AAV1 vector administered intramuscularly. RESULTS: The occurrence of immune responses against OVA transgene following intramuscular delivery by AAV have been described previously and resulted in the loss of OVA protein expression. In the present study, we demonstrate that OVA protein expression was maintained when mir-142-3pT sequences were incorporated into the expression cassette. The sustained expression of OVA protein over time correlated with a reduced increase in anti-OVA antibody levels. Furthermore, no cellular infiltrates were observed in the muscle tissue when AAV1 vectors containing four or eight repeats of mir-142-3p target sequences after the OVA sequence were used. CONCLUSIONS: The rising humoral and cellular immune responses against OVA protein after intramuscular delivery can be efficiently reduced by the use of mir-142-3p target sequences.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Fenómenos Inmunogenéticos/efectos de los fármacos , MicroARNs/metabolismo , Animales , Células HEK293 , Humanos , Inmunosupresores/farmacología , Inyecciones Intramusculares , Masculino , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , MicroARNs/genética , MicroARNs/farmacología , Ovalbúmina/farmacología , Transcripción Genética/efectos de los fármacos
8.
Hepatology ; 55(3): 821-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21932399

RESUMEN

UNLABELLED: Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are drug efflux pumps responsible for the multidrug resistance phenotype causing hepatocellular carcinoma (HCC) treatment failure. Here we studied the expression of 15 ABC transporters relevant for multidrug resistance in 19 paired HCC patient samples (16 untreated, 3 treated by chemotherapeutics). Twelve ABC transporters showed up-regulation in HCC compared with adjacent healthy liver. These include ABCA2, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC10, ABCC11, ABCC12, and ABCE1. The expression profile and function of some of these transporters have not been associated with HCC thus far. Because cellular microRNAs (miRNAs) are involved in posttranscriptional gene silencing, we hypothesized that regulation of ABC expression in HCC might be mediated by miRNAs. To study this, miRNAs were profiled and dysregulation of 90 miRNAs was shown in HCC compared with healthy liver, including up-regulation of 11 and down-regulation of 79. miRNA target sites in ABC genes were bioinformatically predicted and experimentally verified in vitro using luciferase reporter assays. In total, 13 cellular miRNAs were confirmed that target ABCA1, ABCC1, ABCC5, ABCC10, and ABCE1 genes and mediate changes in gene expression. Correlation analysis between ABC and miRNA expression in individual patients revealed an inverse relationship, providing an indication for miRNA regulation of ABC genes in HCC. CONCLUSION: Up-regulation of ABC transporters in HCC occurs prior to chemotherapeutic treatment and is associated with miRNA down-regulation. Up-regulation of five ABC genes appears to be mediated by 13 cellular miRNAs in HCC patient samples. miRNA-based gene therapy may be a novel and promising way to affect the ABC profile and overcome clinical multidrug resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/fisiología , Carcinoma Hepatocelular/fisiopatología , Neoplasias Hepáticas/fisiopatología , MicroARNs/fisiología , Regulación hacia Arriba/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Estudios de Casos y Controles , Regulación hacia Abajo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Quimioterapia , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Fenotipo
9.
BMC Biotechnol ; 12: 42, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22827812

RESUMEN

BACKGROUND: Controlling and limiting the expression of short hairpin RNA (shRNA) by using constitutive or tissue-specific polymerase II (pol II) expression can be a promising strategy to avoid RNAi toxicity. However, to date detailed studies on requirements for effective pol II shRNA expression and processing are not available. We investigated the optimal structural configuration of shRNA molecules, namely: hairpin location, stem length and termination signal required for effective pol II expression and compared it with an alternative strategy of avoiding toxicity by using artificial microRNA (miRNA) scaffolds. RESULTS: Highly effective shRNAs targeting luciferase (shLuc) or Apolipoprotein B100 (shApoB1 and shApoB2) were placed under the control of the pol II CMV promoter and expressed at +5 or +6 nucleotides (nt) with reference to the transcription start site (TSS). Different transcription termination signals (TTS), namely minimal polyadenylation (pA), poly T (T5) and U1 were also used. All pol II- expressed shRNA variants induced mild inhibition of Luciferase reporters carrying specific targets and none of them showed comparable efficacy to their polymerase III-expressed H1-shRNA controls, regardless of hairpin position and termination signal used. Extending hairpin stem length from 20 basepairs (bp) to 21, 25 or 29 bp yielded only slight improvement in the overall efficacy. When shLuc, shApoB1 and shApoB2 were placed in an artificial miRNA scaffold, two out of three were as potent as the H1-shRNA controls. Quantification of small interfering RNA (siRNA) molecules showed that the artificial miRNA constructs expressed less molecules than H1-shRNAs and that CMV-shRNA expressed the lowest amount of siRNA molecules suggesting that RNAi processing in this case is least effective. Furthermore, CMV-miApoB1 and CMV-miApoB2 were as effective as the corresponding H1-shApoB1 and H1-shApoB2 in inhibiting endogenous ApoB mRNA. CONCLUSION: Our results demonstrate that artificial miRNA have a better efficacy profile than shRNA expressed either from H1 or CMV promoter and will be used in the future for RNAi therapeutic development.


Asunto(s)
Apolipoproteína B-100/antagonistas & inhibidores , Luciferasas/antagonistas & inhibidores , MicroARNs/metabolismo , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Línea Celular , Citomegalovirus/genética , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Polimerasa II/genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Sitio de Iniciación de la Transcripción
10.
J Transl Med ; 10: 122, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22704060

RESUMEN

BACKGROUND: Adeno-associated vectors (rAAV) have been used to attain long-term liver gene expression. In humans, the cellular immune response poses a serious obstacle for transgene persistence while neutralizing humoral immunity curtails re-administration. Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria) benefits from liver gene transfer in mouse models and clinical trials are about to begin. In this work, we sought to study in non-human primates the feasibility of repeated gene-transfer with intravenous administration of rAAV5 vectors under the effects of an intensive immunosuppressive regimen and to analyze its ability to circumvent T-cell immunity and thereby prolong transgene expression. METHODS: Three female Macaca fascicularis were intravenously injected with 1 x 10(13) genome copies/kg of rAAV5 encoding the human PBGD. Mycophenolate mofetil (MMF), anti-thymocyte immunoglobulin, methylprednisolone, tacrolimus and rituximab were given in combination during 12 weeks to block T- and B-cell mediated adaptive immune responses in two macaques. Immunodeficient and immunocompetent mice were intravenously injected with 5 x 10(12) genome copies/kg of rAAV5-encoding luciferase protein. Forty days later MMF, tacrolimus and rituximab were daily administrated to ascertain whether the immunosuppressants or their metabolites could interfere with transgene expression. RESULTS: Macaques given a rAAV5 vector encoding human PBGD developed cellular and humoral immunity against viral capsids but not towards the transgene. Anti-AAV humoral responses were attenuated during 12 weeks but intensely rebounded following cessation of the immunosuppressants. Accordingly, subsequent gene transfer with a rAAV5 vector encoding green fluorescent protein was impossible. One macaque showed enhanced PBGD expression 25 weeks after rAAV5-pbgd administration but overexpression had not been detected while the animal was under immunosuppression. As a potential explanation, MMF decreases transgene expression in mouse livers that had been successfully transduced by a rAAV5 several weeks before MMF onset. Such a silencing effect was independent of AAV complementary strand synthesis and requires an adaptive immune system. CONCLUSIONS: These results indicate that our transient and intensive pharmacological immunosuppression fails to improve AAV5-based liver gene transfer in non-human primates. The reasons include an incomplete restraint of humoral immune responses to viral capsids that interfere with repeated gene transfer in addition to an intriguing MMF-dependent drug-mediated interference with liver transgene expression.


Asunto(s)
Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Inmunosupresores/farmacología , Hígado/metabolismo , Macaca fascicularis/inmunología , Animales , Antígenos Virales/inmunología , Cápside/inmunología , ADN Viral/sangre , Dependovirus/efectos de los fármacos , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Inmunidad/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Humoral/inmunología , Terapia de Inmunosupresión , Inmunosupresores/administración & dosificación , Inyecciones Intravenosas , Hígado/efectos de los fármacos , Ratones , Ratones Transgénicos , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/farmacología , Serotipificación , Transgenes/genética , Insuficiencia del Tratamiento
11.
Hepatology ; 53(3): 821-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21319201

RESUMEN

UNLABELLED: Obesity-induced insulin resistance is associated with both ectopic lipid deposition and chronic, low-grade adipose tissue inflammation. Despite their excess fat, obese individuals show lower fatty-acid oxidation (FAO) rates. This has raised the question of whether burning off the excess fat could improve the obese metabolic phenotype. Here we used human-safe nonimmunoreactive adeno-associated viruses (AAV) to mediate long-term hepatic gene transfer of carnitine palmitoyltransferase 1A (CPT1A), the key enzyme in fatty-acid ß-oxidation, or its permanently active mutant form CPT1AM, to high-fat diet-treated and genetically obese mice. High-fat diet CPT1A- and, to a greater extent, CPT1AM-expressing mice showed an enhanced hepatic FAO which resulted in increased production of CO(2) , adenosine triphosphate, and ketone bodies. Notably, the increase in hepatic FAO not only reduced liver triacylglyceride content, inflammation, and reactive oxygen species levels but also systemically affected a decrease in epididymal adipose tissue weight and inflammation and improved insulin signaling in liver, adipose tissue, and muscle. Obesity-induced weight gain, increase in fasting blood glucose and insulin levels, and augmented expression of gluconeogenic genes were restored to normal only 3 months after AAV treatment. Thus, CPT1A- and, to a greater extent, CPT1AM-expressing mice were protected against obesity-induced weight gain, hepatic steatosis, diabetes, and obesity-induced insulin resistance. In addition, genetically obese db/db mice that expressed CPT1AM showed reduced glucose and insulin levels and liver steatosis. CONCLUSION: A chronic increase in liver FAO improves the obese metabolic phenotype, which indicates that AAV-mediated CPT1A expression could be a potential molecular therapy for obesity and diabetes.


Asunto(s)
Carnitina O-Palmitoiltransferasa/administración & dosificación , Diabetes Mellitus/terapia , Ácidos Grasos/metabolismo , Hígado/metabolismo , Obesidad/terapia , Animales , Carnitina O-Palmitoiltransferasa/genética , Dependovirus/genética , Grasas de la Dieta/administración & dosificación , Hígado Graso/metabolismo , Hígado Graso/terapia , Terapia Genética , Humanos , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Obesos , Obesidad/complicaciones , Oxidación-Reducción , Triglicéridos/metabolismo
12.
BMC Gastroenterol ; 12: 172, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23198878

RESUMEN

BACKGROUND: Induced regulatory T (iTreg) lymphocytes show promise for application in the treatment of allergic, autoimmune and inflammatory disorders. iTreg cells demonstrate advantages over natural Treg (nTreg) cells in terms of increased number of starting population and greater potential to proliferate. Different activation methods to generate iTreg cells result in iTreg cells that are heterogeneous in phenotype and mechanisms of suppression. Therefore it is of interest to explore new techniques to generate iTreg cells and to determine their physiological relevance. METHODS: Using phorbol myristate acetate (PMA)/ionomycin and anti-CD3 activation of CD4⁺CD25⁻ cells we generated in vitro functional CD4⁺CD25⁻ iTreg (TregPMA) cells. Functionality of the generated TregPMA cells was tested in vivo in a mouse model of inflammatory bowel disease (IBD) - CD45RB transfer colitis model. RESULTS: TregPMA cells expressed regulatory markers and proved to ameliorate the disease phenotype in murine CD45RB transfer colitis model. The body weight loss and disease activity scores for TregPMA treated mice were reduced when compared to diseased control group. Histological assessment of colon sections confirmed amelioration of the disease phenotype. Additionally, cytokine analysis showed decreased levels of proinflammatory colonic and plasma IL-6, colonic IL-1 ß and higher levels of colonic IL-17 when compared to diseased control group. CONCLUSIONS: This study identifies a new method to generate in vitro iTreg cells (TregPMA cells) which physiological efficacy has been demonstrated in vivo.


Asunto(s)
Complejo CD3/inmunología , Ionóforos de Calcio/farmacología , Colitis/terapia , Ionomicina/farmacología , Activación de Linfocitos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/trasplante , Acetato de Tetradecanoilforbol/análogos & derivados , Análisis de Varianza , Animales , Peso Corporal , Antígenos CD4/metabolismo , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos BALB C , Linfocitos T Reguladores/metabolismo , Acetato de Tetradecanoilforbol/farmacología
13.
Mol Ther ; 19(5): 870-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21119625

RESUMEN

Primary hyperoxaluria type I (PH1) is an inborn error of metabolism caused by deficiency of the hepatic enzyme alanine-glyoxylate aminotransferase (AGXT or AGT) which leads to overproduction of oxalate by the liver and subsequent urolithiasis and renal failure. The current therapy largely depends on liver transplantation, which is associated with significant morbidity and mortality. To explore an alternative treatment, we used somatic gene transfer in a mouse genetic model for PH1 (Agxt1KO). Recombinant adeno-associated virus (AAV) vectors containing the human AGXT complementary DNA (cDNA) were pseudotyped with capsids from either serotype 8 or 5, and delivered to the livers of Agxt1KO mice via the tail vein. Both AAV8-AGXT and AAV5-AGXT vectors were able to reduce oxaluria to normal levels. In addition, treated mice showed blunted increase of oxaluria after challenge with ethylene glycol (EG), a glyoxylate precursor. In mice, AGT enzyme activity in whole liver extracts were restored to normal without hepatic toxicity nor immunogenicity for the 50 day follow-up. In summary, this study demonstrates the correction of primary hyperoxaluria in mice treated with either AAV5 or AAV8 vectors.


Asunto(s)
Hiperoxaluria Primaria/enzimología , Hiperoxaluria Primaria/terapia , Transaminasas/metabolismo , Animales , Western Blotting , Proteínas de la Cápside/administración & dosificación , Dependovirus/genética , Modelos Animales de Enfermedad , Glicol de Etileno/administración & dosificación , Glicol de Etileno/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Hiperoxaluria Primaria/genética , Hígado/enzimología , Ratones , Ratones Noqueados , Nefrocalcinosis , Oxalatos/metabolismo , Fenotipo , Transaminasas/deficiencia , Transaminasas/genética , Urolitiasis
14.
Mol Ther ; 19(4): 731-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21304496

RESUMEN

Serum low-density lipoprotein cholesterol (LDL-C) levels are proportionate to the risk of atherosclerotic cardiovascular disease. In order to reduce serum total cholesterol and LDL-C levels in mice, RNA interference (RNAi) was used to inhibit expression of the structural protein of LDL-C, apolipoprotein B100 (ApoB). We developed and screened 19 short hairpin RNAs (shRNAs) targeting conserved sequences in human, mouse, and macaque ApoB mRNAs (shApoB) and subsequently narrowed our focus to one candidate for in vivo testing. Self-complementary adeno-associated virus serotype 8 (scAAV8) was used for long-term transduction of murine liver with shApoB. A strong dose-dependent knockdown of ApoB mRNA and protein was observed, which correlated with a reduction in total cholesterol levels, without obvious signs of toxicity. Furthermore, shApoB was found to specifically reduce LDL-C in diet-induced dyslipidemic mice, whereas high-density lipoprotein cholesterol (HDL-C) remained unaffected. Finally, elevated lipid accumulation was shown in murine liver transduced with shApoB, a known phenotypic side effect of lowering ApoB levels. These results demonstrate a robust dose-dependent knockdown of ApoB by AAV-delivered shRNA in murine liver, thus providing an excellent candidate for development of RNAi-based gene therapy for the treatment of hypercholesterolemia.


Asunto(s)
Apolipoproteínas B/genética , Colesterol/sangre , Dependovirus/genética , Vectores Genéticos/genética , ARN Interferente Pequeño/genética , Animales , Apolipoproteínas B/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Colesterol/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Mol Ther ; 19(2): 243-50, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20877347

RESUMEN

Acute intermittent porphyria (AIP) is characterized by a hereditary deficiency of hepatic porphobilinogen deaminase (PBGD) activity. Clinical features are acute neurovisceral attacks accompanied by overproduction of porphyrin precursors in the liver. Recurrent life-threatening attacks can be cured only by liver transplantation. We developed recombinant adeno-associated virus (rAAV) vectors expressing human PBGD protein driven by a liver-specific promoter to provide sustained protection against induced attacks in a predictive model for AIP. Phenobarbital injections in AIP mice induced porphyrin precursor accumulation, functional block of nerve conduction, and progressive loss of large-caliber axons in the sciatic nerve. Hepatocyte transduction showed no gender variation after rAAV2/8 injection, while rAAV2/5 showed lower transduction efficiency in females than males. Full protection against induced phenobarbital-attacks was achieved in animals showing over 10% of hepatocytes expressing high amounts of PBGD. More importantly, sustained hepatic expression of hPBGD protected against loss of large-caliber axons in the sciatic nerve and disturbances in nerve conduction velocity as induced by recurrent phenobarbital administrations. These data show for the first time that porphyrin precursors generated in the liver interfere with motor function. rAAV2/5-hPBGD vector can be produced in sufficient quantity for an intended gene therapy trial in patients with recurrent life-threatening porphyria attacks.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Porfirias Hepáticas/terapia , Neuropatía Ciática/terapia , Animales , Femenino , Humanos , Hidroximetilbilano Sintasa/genética , Masculino , Ratones , Ratones Transgénicos , Fenobarbital/toxicidad , Porfirias Hepáticas/enzimología , Porfirias Hepáticas/fisiopatología , Neuropatía Ciática/inducido químicamente
16.
Mol Ther ; 19(2): 251-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139569

RESUMEN

Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.


Asunto(s)
Encéfalo/metabolismo , Terapia Genética/métodos , Mucopolisacaridosis III/terapia , Mucopolisacaridosis I/terapia , Acetilglucosaminidasa/genética , Animales , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Reacción en Cadena de la Polimerasa
17.
Brain Sci ; 11(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498212

RESUMEN

Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype 5 expressing a microRNA that targets HTT mRNA (AAV5-miHTT) is in development for the treatment of HD with promising results in rodent and minipig HD models. To support a clinical trial, toxicity studies were performed in non-human primates (NHP, Macaca fascicularis) and Sprague-Dawley rats to evaluate the safety of AAV5-miHTT, the neurosurgical administration procedure, vector delivery and expression of the miHTT transgene during a 6-month observation period. For accurate delivery of AAV5-miHTT to the striatum, real-time magnetic resonance imaging (MRI) with convection-enhanced delivery (CED) was used in NHP. Catheters were successfully implanted in 24 NHP, without neurological symptoms, and resulted in tracer signal in the target areas. Widespread vector DNA and miHTT transgene distribution in the brain was found, particularly in areas associated with HD pathology. Intrastriatal administration of AAV5-miHTT was well tolerated with no clinically relevant changes in either species. These studies demonstrate the excellent safety profile of AAV5-miHTT, the reproducibility and tolerability of intrastriatal administration, and the delivery of AAV5-miHTT to the brain, which support the transition of AAV5-miHTT into clinical studies.

18.
Sci Transl Med ; 13(588)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827977

RESUMEN

Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Animales , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , MicroARNs/metabolismo , Porcinos , Porcinos Enanos/metabolismo , Distribución Tisular
19.
Blood Adv ; 3(17): 2632-2641, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501158

RESUMEN

Adeno-associated virus (AAV)-based liver gene therapy has been shown to be clinically successful. However, the presence of circulating neutralizing antibodies (NABs) against AAV vector capsids remains a major challenge as it may prevent successful transduction of the target cells. Therefore, there is a need to develop strategies that would enable AAV-mediated gene delivery to patients with preexisting anti-AAV NABs. In the current study, the feasibility of using an immunoadsorption (IA) procedure for repeated, liver-targeted gene delivery in nonhuman primates was explored. The animals were administered IV with recombinant AAV5 (rAAV5) carrying the reporter gene human secreted embryonic alkaline phosphatase (hSEAP). Seven weeks after the first rAAV treatment, all of the animals were readministered with rAAV5 carrying the therapeutic hemophilia B gene human factor IX (hFIX). Half of the animals administered with rAAV5-hSEAP underwent IA prior to the second rAAV5 exposure. The transduction efficacies of rAAV5-hSEAP and rAAV5-hFIX were assessed by measuring the levels of hSEAP and hFIX proteins. Although no hFIX was detected after rAAV5-hFIX readministration without prior IA, all animals submitted to IA showed therapeutic levels of hFIX expression, and a threshold of anti-AAV5 NAB levels compatible with successful readministration was demonstrated. In summary, our data demonstrate that the use of a clinically applicable IA procedure enables successful readministration of an rAAV5-based gene transfer in a clinically relevant animal model. Finally, the analysis of anti-AAV NAB levels in human subjects submitted to IA confirmed the safety and efficacy of the procedure to reduce anti-AAV NABs. Furthermore, clinical translation was assessed using an immunoglobulin G assay as surrogate.


Asunto(s)
Anticuerpos Antivirales/aislamiento & purificación , Dependovirus/inmunología , Técnicas de Transferencia de Gen/normas , Técnicas de Inmunoadsorción , Hígado/metabolismo , Fosfatasa Alcalina/administración & dosificación , Fosfatasa Alcalina/genética , Animales , Anticuerpos Antivirales/efectos adversos , Dependovirus/genética , Factor IX/administración & dosificación , Factor IX/genética , Humanos , Primates
20.
Mol Ther Methods Clin Dev ; 15: 221-231, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31709273

RESUMEN

Gene therapy for severe hemophilia B is advancing and offers sustained disease amelioration with a single treatment. We have reported the efficacy and safety of AMT-060, an investigational gene therapy comprising an adeno-associated virus serotype 5 capsid encapsidating the codon-optimized wild-type human factor IX (WT hFIX) gene with a liver-specific promoter, in patients with severe hemophilia B. Treatment with 2 × 1013 gc/kg AMT-060 showed sustained and durable FIX activity of 3%-13% and a substantial reduction in spontaneous bleeds without T cell-mediated hepatoxicity. To achieve higher FIX activity, we modified AMT-060 to encode the R338L "Padua" FIX variant that has increased specific activity (AMT-061). We report the safety and increased FIX activity of AMT-061 in non-human primates. Animals (n = 3/group) received intravenous AMT-060 (5 × 1012 gc/kg), AMT-061 (ranging from 5 × 1011 to 9 × 1013 gc/kg), or vehicle. Human FIX protein expression, FIX activity, and coagulation markers including D-dimer and thrombin-antithrombin complexes were measured. At equal doses, AMT-060 and AMT-061 resulted in similar human FIX protein expression, but FIX activity was 6.5-fold enhanced using AMT-061. Both vectors show similar safety and transduction profiles. Thus, AMT-061 holds great promise as a more potent FIX replacement gene therapy with a favorable safety profile.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA