Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(14): 4094-4106, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37059700

RESUMEN

Land-use and land-cover transitions can affect biodiversity and ecosystem functioning in a myriad of ways, including how energy is transferred within food-webs. Size spectra (i.e. relationships between body size and biomass or abundance) provide a means to assess how food-webs respond to environmental stressors by depicting how energy is transferred from small to larger organisms. Here, we investigated changes in the size spectrum of aquatic macroinvertebrates along a broad land-use intensification gradient (from Atlantic Forest to mechanized agriculture) in 30 Brazilian streams. We expected to find a steeper size spectrum slope and lower total biomass in more disturbed streams due to higher energetic expenditure in physiologically stressful conditions, which has a disproportionate impact on large individuals. As expected, we found that more disturbed streams had fewer small organisms than pristine forest streams, but, surprisingly, they had shallower size spectrum slopes, which indicates that energy might be transferred more efficiently in disturbed streams. Disturbed streams were also less taxonomically diverse, suggesting that the potentially higher energy transfer in these webs might be channelled via a few efficient trophic links. However, because total biomass was higher in pristine streams, these sites still supported a greater number of larger organisms and longer food chains (i.e. larger size range). Our results indicate that land-use intensification decreases ecosystem stability and enhances vulnerability to population extinctions by reducing the possible energetic pathways while enhancing efficiency between the remaining food-web linkages. Our study represents a step forward in understanding how land-use intensification affects trophic interactions and ecosystem functioning in aquatic systems.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Cadena Alimentaria , Bosques , Biomasa , Ríos/química , Invertebrados
2.
Oecologia ; 199(3): 671-683, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35833985

RESUMEN

Local communities and individual species jointly contribute to the overall beta diversity in metacommunities. However, it is mostly unknown whether the local contribution (LCBD) and the species contribution (SCBD) to beta diversity can be predicted by local and regional environmental characteristics and by species traits and taxonomic relatedness, respectively. We investigated the LCBD and SCBD of stream benthic diatoms and insects along a gradient of land use intensification, ranging from streams in pristine forests to agricultural catchments in southeast subtropical Brazil. We expected that the LCBD would be negatively related to forest cover and positively related to the most unique streams in terms of environmental characteristics and land use (hereafter environmental and land use uniqueness, respectively). We also expected that species with a high SCBD would occur at sites with reduced forest cover. We found that the LCBD of diatoms and insects was negatively related to forest cover. The LCBD of insects was also positively related to environmental and land use uniqueness. As forest cover was negatively related to uniqueness in land use, biologically unique streams were those that deviated from the typical regional land cover. We also found that diatom traits, insect traits, and taxonomic relatedness partly explained SCBD. Furthermore, the SCBD of diatoms was positively correlated with forest cover, but the inverse was found for insects. We showed that deforestation creates novel and unique communities in subtropical streams and that species that contribute the most to beta diversity can occur at opposite ends of a land use gradient.


Asunto(s)
Conservación de los Recursos Naturales , Ríos , Agricultura , Animales , Bosques , Insectos
3.
Ecology ; 102(11): e03498, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314043

RESUMEN

While land use intensification is a major driver of biodiversity change in streams, the nature of such changes, and at which scales they occur, have not been synthesized. To synthesize how land use change has altered multiple components of stream biodiversity across scales, we compiled data from 37 studies where comparative data were available for species' total and relative abundances from multiple locations including reference (less impacted) streams to those surrounded by different land use types (urban, forestry, and agriculture). We found that each type of land use reduced multiple components of within-stream biodiversity across scales, but that urbanization consistently had the strongest effects. However, we found that ß-diversity among streams in modified landscapes did not differ from ß-diversity observed among reference streams, suggesting little evidence for biotic homogenization. Nevertheless, assemblage composition did experience considerable species turnover between reference and modified streams. Our results emphasize that to understand how anthropogenic factors such as land use alter biodiversity, multiple components of biodiversity within and among sites must be simultaneously considered at multiple scales.


Asunto(s)
Benchmarking , Biodiversidad , Agricultura , Ecosistema , Agricultura Forestal , Urbanización
4.
Ecology ; 101(6): e03014, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068259

RESUMEN

Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which ß-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.e., ß-deviation. We found that both abundance- and incidence-based ß-diversity was negatively related to community size only in Brazil. Also, ß-diversity of small tropical communities was closer to stochastic expectations compared with ß-diversity of large communities. We suggest that ecological drift may drive variation in some small communities by changing the expected outcome of niche selection, increasing the chances of species with low abundance and narrow distribution to occur in some communities. Habitat destruction, overexploitation, pollution, and reductions in connectivity have been reducing the size of biological communities. These environmental pressures might make smaller communities more vulnerable to novel conditions and render community dynamics more unpredictable. Incorporation of community size into ecological models should provide conceptual and applied insights into a better understanding of the processes driving biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Biota , Brasil , Finlandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA