Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(16): 1339-1347, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37595274

RESUMEN

In this spotlight, we review technical issues that compromise single-cell analysis of tissue macrophages, including limited and unrepresentative yields, fragmentation and generation of remnants, and activation during tissue disaggregation. These issues may lead to a misleading definition of subpopulations of macrophages and the expression of macrophage-specific transcripts by unrelated cells. Recognition of the technical limitations of single-cell approaches is required in order to map the full spectrum of tissue-resident macrophage heterogeneity and assess its biological significance.


Asunto(s)
Artefactos , Macrófagos , Macrófagos/metabolismo , Histiocitos
2.
Am J Physiol Endocrinol Metab ; 326(2): E149-E165, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117267

RESUMEN

Macrophages regulate metabolic homeostasis in health and disease. Macrophage colony-stimulating factor (CSF1)-dependent macrophages contribute to homeostatic control of the size of the liver. This study aimed to determine the systemic metabolic consequences of elevating circulating CSF1. Acute administration of a CSF1-Fc fusion protein to mice led to monocytosis, increased resident tissue macrophages in the liver and all major organs, and liver growth. These effects were associated with increased hepatic glucose uptake and extensive mobilization of body fat. The impacts of CSF1 on macrophage abundance, liver size, and body composition were rapidly reversed to restore homeostasis. The effects of CSF1 on metabolism were independent of several known endocrine regulators and did not impact the physiological fasting response. Analysis using implantable telemetry in metabolic cages revealed progressively reduced body temperature and physical activity with no change in diurnal food intake. These results demonstrate the existence of a dynamic equilibrium between CSF1, the mononuclear phagocyte system, and control of liver-to-body weight ratio, which in turn controls systemic metabolic homeostasis. This novel macrophage regulatory axis has the potential to promote fat mobilization, without changes in appetence, which may have novel implications for managing metabolic syndrome.NEW & NOTEWORTHY CSF1 administration expands tissue macrophages, which transforms systemic metabolism. CSF1 drives fat mobilization and glucose uptake to support liver growth. The effects of CSF1 are independent of normal hormonal metabolic regulation. The effects of CSF1 are rapidly reversible, restoring homeostatic body composition. CSF1-dependent macrophages and liver size are coupled in a dynamic equilibrium.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Macrófagos , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/farmacología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Metabolismo de los Hidratos de Carbono , Glucosa/metabolismo , Lípidos
3.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34081701

RESUMEN

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Asunto(s)
Hígado Graso/genética , Macrófagos/metabolismo , Anomalías Musculoesqueléticas/genética , Desarrollo Musculoesquelético/genética , Osteopetrosis/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Embrión de Mamíferos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/terapia , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/deficiencia , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Macrófagos/patología , Masculino , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Anomalías Musculoesqueléticas/terapia , Osteopetrosis/metabolismo , Osteopetrosis/patología , Osteopetrosis/terapia , Ratas , Ratas Transgénicas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia
4.
J Immunol ; 205(11): 3154-3166, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139489

RESUMEN

The proliferation, differentiation, and survival of cells of the mononuclear phagocyte system (MPS; progenitors, monocytes, macrophages, and classical dendritic cells) are controlled by signals from the M-CSF receptor (CSF1R). Cells of the MPS lineage have been identified using numerous surface markers and transgenic reporters, but none is both universal and lineage restricted. In this article, we report the development and characterization of a CSF1R reporter mouse. A FusionRed (FRed) cassette was inserted in-frame with the C terminus of CSF1R, separated by a T2A-cleavable linker. The insertion had no effect of CSF1R expression or function. CSF1R-FRed was expressed in monocytes and macrophages and absent from granulocytes and lymphocytes. In bone marrow, CSF1R-FRed was absent in lineage-negative hematopoietic stem cells, arguing against a direct role for CSF1R in myeloid lineage commitment. It was highly expressed in marrow monocytes and common myeloid progenitors but significantly lower in granulocyte-macrophage progenitors. In sections of bone marrow, CSF1R-FRed was also detected in osteoclasts, CD169+ resident macrophages, and, consistent with previous mRNA analysis, in megakaryocytes. In lymphoid tissues, CSF1R-FRed highlighted diverse MPS populations, including classical dendritic cells. Whole mount imaging of nonlymphoid tissues in mice with combined CSF1R-FRed/Csf1r-EGFP confirmed the restriction of CSF1R expression to MPS cells. The two markers highlight the remarkable abundance and regular distribution of tissue MPS cells, including novel macrophage populations within tendon and skeletal muscle and underlying the mesothelial/serosal/capsular surfaces of every major organ. The CSF1R-FRed mouse provides a novel reporter with exquisite specificity for cells of the MPS.


Asunto(s)
Biomarcadores/metabolismo , Sistema Mononuclear Fagocítico/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Diferenciación Celular/fisiología , Células Dendríticas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Tendones/metabolismo
5.
Blood ; 132(7): 735-749, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-29945953

RESUMEN

Distinct subsets of resident tissue macrophages are important in hematopoietic stem cell niche homeostasis and erythropoiesis. We used a myeloid reporter gene (Csf1r-eGFP) to dissect the persistence of bone marrow and splenic macrophage subsets following lethal irradiation and autologous hematopoietic stem cell transplantation in a mouse model. Multiple recipient bone marrow and splenic macrophage subsets survived after autologous hematopoietic stem cell transplantation with organ-specific persistence kinetics. Short-term persistence (5 weeks) of recipient resident macrophages in spleen paralleled the duration of extramedullary hematopoiesis. In bone marrow, radiation-resistant recipient CD169+ resident macrophages and erythroid-island macrophages self-repopulated long-term after transplantation via autonomous cell division. Posttransplant peak expansion of recipient CD169+ resident macrophage number in bone marrow aligned with the persistent engraftment of phenotypic long-term reconstituting hematopoietic stem cells within bone marrow. Selective depletion of recipient CD169+ macrophages significantly compromised the engraftment of phenotypic long-term reconstituting hematopoietic stem cells and consequently impaired hematopoietic reconstitution. Recipient bone marrow resident macrophages are essential for optimal hematopoietic stem cell transplantation outcomes and could be an important consideration in the development of pretransplant conditioning therapies and/or chemoresistance approaches.


Asunto(s)
Médula Ósea/metabolismo , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Animales , Autoinjertos , Médula Ósea/patología , Supervivencia Celular , Células Madre Hematopoyéticas/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/terapia
6.
Blood ; 129(21): 2939-2949, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28400375

RESUMEN

Interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 plays a critical role in the retention and migration of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) microenvironment. In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of the CXCR4/CXCL12 axis on the HSPC compartment were investigated by using 3 structurally unrelated small molecule CXCR4 antagonists. A >10-fold increase in mobilization efficiency was achieved by administering the antagonists as a subcutaneous continuous infusion for 2 weeks compared to a single bolus injection. A concurrent increase in self-renewing proliferation leading to a twofold to fourfold expansion of the HSPC pool in the BM was observed. The expanded BM showed a distinct repopulating advantage when tested in serial competitive transplantation experiments. Furthermore, major changes within the HSPC niche associated with previously described HSPC expansion strategies were not detected in bones treated with a CXCR4 antagonist infusion. Our data suggest that prolonged but reversible pharmacologic blockade of the CXCR4/CXCL12 axis represents an approach that releases HSPC with efficiency superior to any other known mobilization strategy and may also serve as an effective method to expand the BM HSPC pool.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Células Madre Hematopoyéticas/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Nicho de Células Madre/efectos de los fármacos , Animales , Médula Ósea/metabolismo , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ratones , Ratones Transgénicos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
7.
Am J Pathol ; 187(9): 1923-1934, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28675805

RESUMEN

Multicentric carpal-tarsal osteolysis; multicentric osteolysis, nodulosis, and arthropathy; and Winchester syndromes, skeletal dysplasias characterized by carpal/tarsal and epiphyseal abnormalities, are caused by mutations in v-maf musculoaponeurotic fibrosarcoma oncogene ortholog B (MAFB), matrix metalloproteinase (MMP) 2, and MMP14, respectively; however, the underlying pathophysiology is unclear. Osteoclast-mediated osteolysis has been regarded as the main mechanism, but does not explain the skeletal distribution. We hypothesized that MAFB, MMP-2, and MMP-14 have integral roles in carpal/tarsal and epiphyseal bone development. Normal neonatal mouse forepaws were imaged by micro-computed tomography and examined histologically. Murine forepaw ossification occurred sequentially. Subarticular regions of endochondral ossification showed morphologic and calcification patterns that were distinct from archetypical physeal endochondral ossification. This suggests that two different forms of endochondral ossification occur. The skeletal sites showing the greatest abnormality in the carpal-tarsal osteolysis syndromes are regions of subarticular ossification. Thus, abnormal bone formation in areas of subarticular ossification may explain the site-specific distribution of the carpal-tarsal osteolysis phenotype. MafB, Mmp-2, and Mmp-14 were expressed widely, and tartrate-resistant acid phosphatase staining notably was absent in the subarticular regions of the cartilage anlagen and entheses at a time point most relevant to the human osteolysis syndromes. Thus, abnormal peri-articular skeletal development and modeling, rather than excessive bone resorption, may be the underlying pathophysiology of these skeletal syndromes.


Asunto(s)
Huesos del Carpo/crecimiento & desarrollo , Placa de Crecimiento/patología , Osteólisis/patología , Animales , Proteínas de Arabidopsis , Huesos del Carpo/diagnóstico por imagen , Huesos del Carpo/metabolismo , Preescolar , Placa de Crecimiento/diagnóstico por imagen , Placa de Crecimiento/metabolismo , Humanos , Liasas Intramoleculares , Factor de Transcripción MafB/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Osteogénesis , Osteólisis/diagnóstico por imagen , Osteólisis/metabolismo , Microtomografía por Rayos X
8.
J Pathol ; 239(2): 218-30, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27174786

RESUMEN

Skeletal metastases present a major clinical challenge for prostate cancer patient care, inflicting distinctive mixed osteoblastic and osteolytic lesions that cause morbidity and refractory skeletal complications. Macrophages are abundant in bone and bone marrow and can influence both osteoblast and osteoclast function in physiology and pathology. Herein, we examined the role of macrophages in prostate cancer bone lesions, particularly the osteoblastic response. First, macrophage and lymphocyte distributions were qualitatively assessed in patient's prostate cancer skeletal lesions by immunohistochemistry. Second, macrophage functional contributions to prostate tumour growth in bone were explored using an immune-competent mouse model combined with two independent approaches to achieve in vivo macrophage depletion: liposome encapsulated clodronate that depletes phagocytic cells (including macrophages and osteoclasts); and targeted depletion of CD169(+) macrophages using a suicide gene knock-in model. Immunohistochemistry and histomorphometric analysis were performed to quantitatively assess cancer-induced bone changes. In human bone metastasis specimens, CD68(+) macrophages were consistently located within the tumour mass. Osteal macrophages (osteomacs) were associated with pathological woven bone within the metastatic lesions. In contrast, lymphocytes were inconsistently present in prostate cancer skeletal lesions and when detected, had varied distributions. In the immune-competent mouse model, CD169(+) macrophage ablation significantly inhibited prostate cancer-induced woven bone formation, suggesting that CD169(+) macrophages within pathological woven bone are integral to tumour-induced bone formation. In contrast, pan-phagocytic cell, but not targeted CD169(+) macrophage depletion resulted in increased tumour mass, indicating that CD169(-) macrophage subset(s) and/or osteoclasts influenced tumour growth. In summary, these observations indicate a prominent role for macrophages in prostate cancer bone metastasis that may be therapeutically targetable to reduce the negative skeletal impacts of this malignancy, including tumour-induced bone modelling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Óseas/secundario , Macrófagos/inmunología , Neoplasias de la Próstata/inmunología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Anciano , Anciano de 80 o más Años , Animales , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Osteoblastos/inmunología , Osteoblastos/patología , Osteoclastos/inmunología , Osteoclastos/patología , Próstata/inmunología , Próstata/patología , Neoplasias de la Próstata/patología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo
9.
BMC Musculoskelet Disord ; 18(1): 228, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558827

RESUMEN

BACKGROUND: Ankylosing spondylitis (AS) is characterised by immune-mediated arthritis and osteoproliferation, ultimately leading to joint ankylosis. Whether inflammation is necessary for osteoproliferation is controversial, fuelled by the unclear efficacy of anti-inflammatory treatments on radiographic progression. In proteoglycan-induced spondylitis (PGISp), a mouse model of AS, inflammation is the prerequisite for osteoproliferation as osteoproliferation was only observed following inflammation-driven intervertebral disc (IVD) destruction. We hypothesised that early intervention with a potent anti-inflammatory therapy would protect IVD integrity and consequently alter disease progression. METHODS: PGISp mice received vehicle or a combination of etanercept (ETN) plus prednisolone (PRD) therapy for 2 or 6 weeks initiated at an early disease stage. Peripheral arthritis was scored longitudinally. Spinal disease was assessed using a semi-quantitative histological scoring regimen including inflammation, joint destruction and excessive tissue formation. RESULTS: ETN + PRD therapy significantly delayed the onset of peripheral arthritis. IVD integrity was significantly protected when treatment was commenced in early disease. Six-weeks of treatment resulted in trends towards reductions in intervertebral joint damage and excessive tissue formation. IVD score distribution was dichotomized, likely reflecting the extent of axial disease at initiation of therapy. In the sub-group of mice with high IVD destruction scores, ETN + PRD treatment significantly reduced IVD destruction severity, inflammation and bone erosion and reduced cartilage damage and excessive tissue formation. CONCLUSIONS: Early intervention with anti-inflammatory treatment not only improved inflammatory symptoms but also ameliorated structural damage of spine in PGISp mice. This preclinical observation suggests that early anti-inflammatory intervention may slow radiographic progression in AS patients.


Asunto(s)
Antiinflamatorios/administración & dosificación , Modelos Animales de Enfermedad , Proteoglicanos/toxicidad , Espondilitis Anquilosante/inducido químicamente , Espondilitis Anquilosante/tratamiento farmacológico , Animales , Esquema de Medicación , Quimioterapia Combinada , Etanercept/administración & dosificación , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Prednisolona/administración & dosificación , Espondilitis Anquilosante/patología
10.
J Pathol ; 236(2): 229-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25712044

RESUMEN

Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high-morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)-induced NHO in genetically unmodified mice. Formation of NHO, measured by micro-computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle-derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate-loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology.


Asunto(s)
Macrófagos/fisiología , Miositis/etiología , Osificación Heterotópica/etiología , Traumatismos de la Médula Espinal/complicaciones , Animales , Cardiotoxinas/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Paraplejía/complicaciones , Células Madre/fisiología
11.
Proc Natl Acad Sci U S A ; 110(4): E285-94, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23277562

RESUMEN

SMG1 is a member of the phosphoinositide kinase-like kinase family of proteins that includes ATM, ATR, and DNA-PK, proteins with known roles in DNA damage and cellular stress responses. SMG1 has a well-characterized role in nonsense-mediated decay as well as suggested roles in the DNA damage response, resistance to oxidative stress, regulation of hypoxic responses, and apoptosis. To understand the roles of SMG1 further, we generated a Genetrap Smg1 mouse model. Smg1 homozygous KO mice were early embryonic lethal, but Smg1 heterozygous mice showed a predisposition to a range of cancers, particularly lung and hematopoietic malignancies, as well as development of chronic inflammation. These mice did not display deficiencies in known roles of SMG1, including nonsense-mediated decay. However, they showed elevated basal tissue and serum cytokine levels, indicating low-level inflammation before the development of tumors. Smg1 heterozygous mice also showed evidence of oxidative damage in tissues. These data suggest that the inflammation observed in Smg1 haploinsufficiency contributes to susceptibility to cancer and that Smg1-deficient animals represent a model of inflammation-enhanced cancer development.


Asunto(s)
Inflamación/genética , Neoplasias Experimentales/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Animales , Secuencia de Bases , ADN Complementario/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Homocigoto , Inflamación/complicaciones , Inflamación/enzimología , Inflamación/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/etiología , Neoplasias Experimentales/patología
12.
Am J Pathol ; 184(12): 3192-204, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25285719

RESUMEN

The distribution, phenotype, and requirement of macrophages for fracture-associated inflammation and/or early anabolic progression during endochondral callus formation were investigated. A murine femoral fracture model [internally fixed using a flexible plate (MouseFix)] was used to facilitate reproducible fracture reduction. IHC demonstrated that inflammatory macrophages (F4/80(+)Mac-2(+)) were localized with initiating chondrification centers and persisted within granulation tissue at the expanding soft callus front. They were also associated with key events during soft-to-hard callus transition. Resident macrophages (F4/80(+)Mac-2(neg)), including osteal macrophages, predominated in the maturing hard callus. Macrophage Fas-induced apoptosis transgenic mice were used to induce macrophage depletion in vivo in the femoral fracture model. Callus formation was completely abolished when macrophage depletion was initiated at the time of surgery and was significantly reduced when depletion was delayed to coincide with initiation of early anabolic phase. Treatment initiating 5 days after fracture with the pro-macrophage cytokine colony stimulating factor-1 significantly enhanced soft callus formation. The data support that inflammatory macrophages were required for initiation of fracture repair, whereas both inflammatory and resident macrophages promoted anabolic mechanisms during endochondral callus formation. Overall, macrophages make substantive and prolonged contributions to fracture healing and can be targeted as a therapeutic approach for enhancing repair mechanisms. Thus, macrophages represent a viable target for the development of pro-anabolic fracture treatments with a potentially broad therapeutic window.


Asunto(s)
Fracturas del Fémur/fisiopatología , Curación de Fractura , Macrófagos/metabolismo , Osteogénesis/fisiología , Periostio/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Citocinas/metabolismo , Progresión de la Enfermedad , Citometría de Flujo , Fijación de Fractura , Inmunohistoquímica , Inflamación , Fijadores Internos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/citología , Fenotipo
13.
Diabetologia ; 57(9): 1977-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957662

RESUMEN

AIMS/HYPOTHESIS: The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. METHODS: Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. RESULTS: Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-ß were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. CONCLUSIONS/INTERPRETATION: These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Riñón/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Macrófagos/metabolismo , Masculino , Ratones , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética
14.
Am J Pathol ; 182(5): 1501-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23499466

RESUMEN

Previous studies have generated conflicting results regarding the contribution of B cells to bone formation during physiology and repair. Here, we have investigated the role of B cells in osteoblast-mediated intramembranous anabolic bone modeling. Immunohistochemistry for CD45 receptor expression indicated that B cells had no propensity or aversion for endosteal regions or sites of bone modeling and/or remodeling in wild-type mice. In the endocortical diaphyseal region, quantitative immunohistology demonstrated that young wild-type and B-cell deficient mice had similar amounts of osteocalcin(+) osteoblast bone modeling surface. The degree of osteoblast-associated osteomac canopy was also comparable in these mice inferring that bone modeling cellular units were preserved in the absence of B cells. In a tibial injury model, only rare CD45 receptor positive B cells were located within areas of high anabolic activity, including minimal association with osterix(+) osteoblast-lineage committed mesenchymal cells in wild-type mice. Quantitative immunohistology demonstrated that collagen type I matrix deposition and macrophage and osteoclast distribution within the injury site were not compromised by the absence of B cells. Overall, osteoblast distribution during normal growth and bone healing via intramembranous ossification proceeded normally in the absence of B cells. These observations support that in vivo, these lymphoid cells have minimal influence, or at most, make redundant contributions to osteoblast function during anabolic bone modeling via intramembranous mechanisms.


Asunto(s)
Linfocitos B/patología , Depleción Linfocítica , Osteogénesis , Tibia/lesiones , Tibia/patología , Cicatrización de Heridas , Animales , Médula Ósea/patología , Remodelación Ósea , Microambiente Celular , Diáfisis/patología , Modelos Animales de Enfermedad , Antígenos Comunes de Leucocito/metabolismo , Membranas/patología , Ratones , Ratones Endogámicos C57BL , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Tibia/fisiopatología
15.
J Leukoc Biol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526212

RESUMEN

Macrophage and osteoclast proliferation, differentiation and survival are regulated by colony-stimulating factor-1 receptor (CSF1R) signaling. Osteopetrosis associated with Csf1 and Csf1r mutations has been attributed to the loss of osteoclasts and deficiency in bone resorption. Here we demonstrate that homozygous Csf1r mutation in rat leads to delayed postnatal skeletal ossification associated with substantial loss of osteal macrophages (osteomacs) in addition to osteoclasts. Osteosclerosis and site-specific skeletal abnormalities were reversed by intraperitoneal transfer of wild-type bone marrow cells (BMT) at weaning. Following BMT, IBA1+ macrophages were detected before TRAP+ osteoclasts at sites of ossification restoration. These observations extend evidence that osteomacs independently contribute to bone anabolism and are required for normal postnatal bone growth and morphogenesis.

16.
Arthritis Rheum ; 64(7): 2211-22, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22328069

RESUMEN

OBJECTIVE: The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 ß-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17-dependent inflammatory arthritis developed after dectin 1-mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-ß-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process. METHODS: SKG mice and control BALB/c mice were injected once with curdlan or mannan. Arthritis was scored weekly, and organs were assessed for pathologic features. Anti-IL-23 monoclonal antibodies were injected into curdlan-treated SKG mice. CD4+ T cells were transferred from curdlan-treated mice to SCID mice, and sera were analyzed for autoantibodies. RESULTS: After systemic injection of curdlan, SKG mice developed enthesitis, wrist, ankle, and sacroiliac joint arthritis, dactylitis, plantar fasciitis, vertebral inflammation, ileitis resembling Crohn's disease, and unilateral uveitis. Mannan triggered spondylitis and arthritis. Arthritis and spondylitis were T cell- and IL-23-dependent and were transferable to SCID recipients with CD4+ T cells. SpA was associated with collagen- and proteoglycan-specific autoantibodies. CONCLUSION: Our findings indicate that the SKG ZAP-70W163C mutation predisposes BALB/c mice to SpA, resulting from innate and adaptive autoimmunity, after systemic ß-glucan or mannan exposure.


Asunto(s)
Artritis Experimental/patología , Artritis Reumatoide/patología , Ileítis/inducido químicamente , Espondiloartritis/inducido químicamente , beta-Glucanos , Animales , Artritis Experimental/inmunología , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Autoinmunidad/inmunología , Ileítis/inmunología , Ileítis/patología , Interleucina-17/inmunología , Articulaciones/inmunología , Articulaciones/patología , Ratones , Espondiloartritis/inmunología , Espondiloartritis/patología , Linfocitos T/inmunología , Linfocitos T/patología
17.
BMC Musculoskelet Disord ; 14: 354, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24330574

RESUMEN

BACKGROUND: In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways. METHODS: RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000 cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and immunohistochemistry. RESULTS: Four hundred and sixteen differentially expressed genes were identified that clearly delineated between AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell associated, matrix catabolic, and metabolic pathways. Altered "myogene" profiling was also identified. The inflammatory mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold) and Kremen1 (1.5-fold) were downregulated. CONCLUSIONS: Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly involved in the destructive tissue remodelling.


Asunto(s)
Espondiloartropatías/metabolismo , Membrana Sinovial/metabolismo , Adulto , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Articulación de la Rodilla/metabolismo , Masculino , Persona de Mediana Edad , Regeneración/genética , Espondiloartropatías/etiología , Adulto Joven
18.
Blood ; 116(23): 4815-28, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-20713966

RESUMEN

In the bone marrow, hematopoietic stem cells (HSCs) reside in specific niches near osteoblast-lineage cells at the endosteum. To investigate the regulation of these endosteal niches, we studied the mobilization of HSCs into the bloodstream in response to granulocyte colony-stimulating factor (G-CSF). We report that G-CSF mobilization rapidly depletes endosteal osteoblasts, leading to suppressed endosteal bone formation and decreased expression of factors required for HSC retention and self-renewal. Importantly, G-CSF administration also depleted a population of trophic endosteal macrophages (osteomacs) that support osteoblast function. Osteomac loss, osteoblast suppression, and HSC mobilization occurred concomitantly, suggesting that osteomac loss could disrupt endosteal niches. Indeed, in vivo depletion of macrophages, in either macrophage Fas-induced apoptosis (Mafia) transgenic mice or by administration of clodronate-loaded liposomes to wild-type mice, recapitulated the: (1) loss of endosteal osteoblasts and (2) marked reduction of HSC-trophic cytokines at the endosteum, with (3) HSC mobilization into the blood, as observed during G-CSF administration. Together, these results establish that bone marrow macrophages are pivotal to maintain the endosteal HSC niche and that the loss of such macrophages leads to the egress of HSCs into the blood.


Asunto(s)
Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Nicho de Células Madre/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular/fisiología , Separación Celular , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas/metabolismo , Inmunohistoquímica , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Blood ; 116(19): 3955-63, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-20682855

RESUMEN

The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Inflamación/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Animales , Línea Celular Tumoral , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Inflamación/patología , Inflamación/terapia , Leucopoyesis/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/clasificación , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Ratas
20.
Blood ; 115(1): 122-32, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19789388

RESUMEN

Tumor necrosis factor (TNF) is a key cytokine in the effector phase of graft-versus-host disease (GVHD) after bone marrow transplantation, and TNF inhibitors have shown efficacy in clinical and experimental GVHD. TNF signals through the TNF receptors (TNFR), which also bind soluble lymphotoxin (LTalpha3), a TNF family member with a previously unexamined role in GVHD pathogenesis. We have used preclinical models to investigate the role of LT in GVHD. We confirm that grafts deficient in LTalpha have an attenuated capacity to induce GVHD equal to that seen when grafts lack TNF. This is not associated with other defects in cytokine production or T-cell function, suggesting that LTalpha3 exerts its pathogenic activity directly via TNFR signaling. We confirm that donor-derived LTalpha is required for graft-versus-leukemia (GVL) effects, with equal impairment in leukemic clearance seen in recipients of LTalpha- and TNF-deficient grafts. Further impairment in tumor clearance was seen using Tnf/Lta(-/-) donors, suggesting that these molecules play nonredundant roles in GVL. Importantly, donor TNF/LTalpha were only required for GVL where the recipient leukemia was susceptible to apoptosis via p55 TNFR signaling. These data suggest that antagonists neutralizing both TNF and LTalpha3 may be effective for treatment of GVHD, particularly if residual leukemia lacks the p55 TNFR.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Linfotoxina-alfa/inmunología , Animales , Apoptosis , Trasplante de Médula Ósea , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Enfermedad Injerto contra Huésped/patología , Mediadores de Inflamación/metabolismo , Ratones , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Inmunológicos/administración & dosificación , Receptores Inmunológicos/inmunología , Receptores del Factor de Necrosis Tumoral/administración & dosificación , Receptores del Factor de Necrosis Tumoral/inmunología , Solubilidad , Factor de Necrosis Tumoral alfa/deficiencia , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA