Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Biomech ; 37(1): 21-29, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152690

RESUMEN

The coupling between the residual limb and the lower-limb prosthesis is not rigid. As a result, external loading produces movement between the prosthesis and residual limb that can lead to undesirable soft-tissue shear stresses. As these stresses are difficult to measure, limb loading is commonly used as a surrogate. However, the relationship between limb loading and the displacements responsible for those stresses remains unknown. To better understand the limb motion within the socket, an inverse kinematic analysis was performed to estimate the motion between the socket and tibia for 10 individuals with a transtibial amputation performing walking and turning activities at 3 different speeds. The authors estimated the rotational stiffness of the limb-socket body to quantify the limb properties when coupled with the socket and highlight how this approach could help inform prosthetic prescriptions. Results showed that peak transverse displacement had a significant, linear relationship with peak transverse loading. Stiffness of the limb-socket body varied significantly between individuals, activities (walking and turning), and speeds. These results suggest that transverse limb loading can serve as a surrogate for residual-limb shear stress and that the setup of a prosthesis could be individually tailored using standard motion capture and inverse kinematic analyses.


Asunto(s)
Miembros Artificiales , Diseño de Prótesis , Rotación , Caminata , Adulto , Anciano , Amputados , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Mecánico , Tibia , Caminata/fisiología
2.
J Med Device ; 18(2): 021005, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974418

RESUMEN

Trips and falls are a major concern for older adults. The resulting injury and loss of mobility can have a significant impact on quality of life. An emerging field of study, known as Perturbation Training, has been shown to reduce injury rates associated with trips and falls in older adults. Treadmills traditionally used for Perturbation Training are large, expensive, and immobile, forcing users to travel long distances to receive care. A portable treadmill would serve a larger portion of the at-risk population than current methods. We developed a portable, low-cost, twin-belt perturbation treadmill capable of high-intensity Perturbation Training. Belt speeds are controlled by a custom mechanical and software interface, allowing operators with no programming experience to control the device. The treadmill can accommodate users up to 118 kg and provides a maximum acceleration and speed of 12 m/s2 and 3.3 m/s, respectively, under full load. The total weight is 180 kg, and the treadmill can be moved like a wheelbarrow, with handles in the back and wheels in the front. The prototype was validated with mechanical and human participant testing, showing it as a viable device for Perturbation Training. In this paper, we will go over the design, fabrication, and validation processes used to create the Portable Perturbation Treadmill.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA