Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(9): 2905-2918, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36688995

RESUMEN

Chimeric antigen receptor (CAR)-engineered immune effector cells constitute a promising approach for adoptive cancer immunotherapy. Nevertheless, on-target/off-tumor toxicity and immune escape due to antigen loss represent considerable challenges. These may be overcome by adaptor CARs that are selectively triggered by bispecific molecules that crosslink the CAR with a tumor-associated surface antigen. Here, we generated NK cells carrying a first- or second-generation universal CAR (UniCAR) and redirected them to tumor cells with so-called target modules (TMs) which harbor an ErbB2 (HER2)-specific antibody domain for target cell binding and the E5B9 peptide recognized by the UniCAR. To investigate differential effects of the protein design on activity, we developed homodimeric TMs with one, two or three E5B9 peptides per monomer, and binding domains either directly linked or separated by an IgG4 Fc domain. The adaptor molecules were expressed as secreted proteins in Expi293F cells, purified from culture supernatants and their bispecific binding to UniCAR and ErbB2 was confirmed by flow cytometry. In cell killing experiments, all tested TMs redirected NK cell cytotoxicity selectively to ErbB2-positive tumor cells. Nevertheless, we found considerable differences in the extent of specific cell killing depending on TM design and CAR composition, with adaptor proteins carrying two or three E5B9 epitopes being more effective when combined with NK cells expressing the first-generation UniCAR, while the second-generation UniCAR was more active in the presence of TMs with one E5B9 sequence. These results may have important implications for the further development of optimized UniCAR and target module combinations for cancer immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Células Asesinas Naturales , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias , Línea Celular Tumoral , Receptor ErbB-2
2.
Cells ; 13(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38334638

RESUMEN

NKG2D is an activating receptor of natural killer cells that recognizes stress-induced ligands (NKG2DL) expressed by many tumor cells. Nevertheless, NKG2DL downregulation or shedding can still allow cancer cells to evade immune surveillance. Here, we used lentiviral gene transfer to engineer clinically usable NK-92 cells with a chimeric antigen receptor (NKAR) which contains the extracellular domain of NKG2D for target recognition, or an NKAR, together with the IL-15 superagonist RD-IL15, and combined these effector cells with recombinant NKG2D-interacting bispecific engagers that simultaneously recognize the tumor-associated antigens epidermal growth factor receptor (EGFR) or ErbB2 (HER2). Applied individually, in in vitro cell-killing assays, these NKAB-EGFR and NKAB-ErbB2 antibodies specifically redirected NKAR-NK-92 and NKAR_RD-IL15-NK-92 cells to glioblastoma and other cancer cells with elevated EGFR or ErbB2 levels. However, in mixed glioblastoma cell cultures, used as a model for heterogeneous target antigen expression, NKAR-NK cells only lysed the EGFR- or ErbB2-expressing subpopulations in the presence of one of the NKAB molecules. This was circumvented by applying NKAB-EGFR and NKAB-ErbB2 together, resulting in effective antitumor activity similar to that against glioblastoma cells expressing both target antigens. Our results demonstrate that combining NK cells carrying an activating NKAR receptor with bispecific NKAB antibodies allows for flexible targeting, which can enhance tumor-antigen-specific cytotoxicity and prevent immune escape.


Asunto(s)
Anticuerpos Biespecíficos , Glioblastoma , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Interleucina-15/metabolismo , Glioblastoma/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales , Anticuerpos Biespecíficos/farmacología , Receptores ErbB/metabolismo
3.
Front Immunol ; 15: 1457887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267747

RESUMEN

NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.


Asunto(s)
Anticuerpos Biespecíficos , Reacciones Cruzadas , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptor ErbB-2 , Animales , Humanos , Receptor ErbB-2/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Reacciones Cruzadas/inmunología , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos
4.
Cancers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686586

RESUMEN

In contrast to T lymphocytes, natural killer (NK) cells do not require prior sensitization but are rapidly activated upon encountering virally infected or neoplastic cells. In addition, NK cells can be safely applied in an allogeneic setting, making them important effector cells for the development of off-the-shelf therapeutics for adoptive cancer immunotherapy. To further enhance their therapeutic potential, here, we engineered continuously expanding NK-92 cells as a clinically relevant model to express a humanized second-generation chimeric antigen receptor (CAR) with a composite CD28-CD3ζ signaling domain (hu14.18.28.z) that targets the disialoganglioside GD2, which is expressed at high levels by neuroblastoma cells and other tumors of neuroectodermal origin. In a separate approach, we fused an IL-15 superagonist (RD-IL15) to the GD2-CAR via a P2A processing site. Lentivirally transduced NK-92/hu14.18.28.z and NK-92/hu14.18.28.z_RD-IL15 cells both displayed high and stable CAR surface expression and specific cytotoxicity toward GD2-positive tumor cells. GD2-CAR NK cells carrying the RD-IL15 construct in addition expressed the IL-15 superagonist, resulting in self-enrichment and targeted cell killing in the absence of exogenous IL-2. Furthermore, co-culture with RD-IL15-secreting GD2-CAR NK cells markedly enhanced proliferation and cytotoxicity of bystander immune cells in a paracrine manner. Our results demonstrate that GD2-CAR NK cells co-expressing the IL-15 superagonist mediate potent direct and indirect antitumor effects, suggesting this strategy as a promising approach for the further development of functionally enhanced cellular therapeutics.

5.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34599028

RESUMEN

BACKGROUND: Natural killer group 2D (NKG2D) is an activating receptor of natural killer (NK) cells and other lymphocytes that mediates lysis of malignant cells through recognition of stress-induced ligands such as MICA and MICB. Such ligands are broadly expressed by cancer cells of various origins and serve as targets for adoptive immunotherapy with effector cells endogenously expressing NKG2D or carrying an NKG2D-based chimeric antigen receptor (CAR). However, shedding or downregulation of NKG2D ligands (NKG2DL) can prevent NKG2D activation, resulting in escape of cancer cells from NKG2D-dependent immune surveillance. METHODS: To enable tumor-specific targeting of NKG2D-expressing effector cells independent of membrane-anchored NKG2DLs, we generated a homodimeric recombinant antibody which harbors an N-terminal single-chain fragment variable (scFv) antibody domain for binding to NKG2D, linked via a human IgG4 Fc region to a second C-terminal scFv antibody domain for recognition of the tumor-associated antigen ErbB2 (HER2). The ability of this molecule, termed NKAB-ErbB2, to redirect NKG2D-expressing effector cells to ErbB2-positive tumor cells of different origins was investigated using peripheral blood mononuclear cells, ex vivo expanded NK cells, and NK and T cells engineered with an NKG2D-based chimeric receptor. RESULTS: On its own, bispecific NKAB-ErbB2 increased lysis of ErbB2-positive breast carcinoma cells by peripheral blood-derived NK cells endogenously expressing NKG2D more effectively than an ErbB2-specific IgG1 mini-antibody able to induce antibody-dependent cell-mediated cytotoxicity via activation of CD16. Furthermore, NKAB-ErbB2 synergized with NK-92 cells or primary T cells engineered to express an NKG2D-CD3ζ chimeric antigen receptor (NKAR), leading to targeted cell killing and greatly enhanced antitumor activity, which remained unaffected by soluble MICA known as an inhibitor of NKG2D-mediated natural cytotoxicity. In an immunocompetent mouse glioblastoma model mimicking low or absent NKG2DL expression, the combination of NKAR-NK-92 cells and NKAB-ErbB2 effectively suppressed outgrowth of ErbB2-positive tumors, resulting in treatment-induced endogenous antitumor immunity and cures in the majority of animals. CONCLUSIONS: Our results demonstrate that combining an NKAB antibody with effector cells expressing an activating NKAR receptor represents a powerful and versatile approach to simultaneously enhance tumor antigen-specific as well as NKG2D-CAR and natural NKG2D-mediated cytotoxicity, which may be particularly useful to target tumors with heterogeneous target antigen expression.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Receptores Quiméricos de Antígenos/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA