Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(9): 4148-4177, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37094040

RESUMEN

DNA sequence composition determines the topology and stability of G-quadruplexes (G4s). Bulged G-quadruplex structures (G4-Bs) are a subset of G4s characterized by 3D conformations with bulges. Current search algorithms fail to capture stable G4-B, making their genome-wide study infeasible. Here, we introduced a large family of computationally defined and experimentally verified potential G4-B forming sequences (pG4-BS). We found 478 263 pG4-BS regions that do not overlap 'canonical' G4-forming sequences in the human genome and are preferentially localized in transcription regulatory regions including R-loops and open chromatin. Over 90% of protein-coding genes contain pG4-BS in their promoter or gene body. We observed generally higher pG4-BS content in R-loops and their flanks, longer genes that are associated with brain tissue, immune and developmental processes. Also, the presence of pG4-BS on both template and non-template strands in promoters is associated with oncogenesis, cardiovascular disease and stemness. Our G4-BS models predicted G4-forming ability in vitro with 91.5% accuracy. Analysis of G4-seq and CUT&Tag data strongly supports the existence of G4-BS conformations genome-wide. We reconstructed a novel G4-B 3D structure located in the E2F8 promoter. This study defines a large family of G4-like sequences, offering new insights into the essential biological functions and potential future therapeutic uses of G4-B.


Asunto(s)
G-Cuádruplex , Humanos , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Regiones Promotoras Genéticas , Secuencia de Bases
2.
J Am Chem Soc ; 146(20): 13709-13713, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738955

RESUMEN

G-Quadruplex (G4) structures formed by guanine-rich DNA and RNA sequences are implicated in various biological processes. Understanding the mechanisms by which proteins recognize G4 structures is crucial for elucidating their functional roles. Here we present the X-ray crystal structure of an ankyrin protein bound to a parallel G4 structure. Our findings reveal a new specific recognition mode in which a bundle of α-helices and loops of the ankyrin form a flat surface to stack on the G-tetrad core. The protein employs a combination of hydrogen bonds and hydrophobic contacts to interact with the G4, and electrostatic interaction is used to enhance the binding affinity. This binding mechanism provides valuable insights into understanding G4 recognition by proteins.


Asunto(s)
Ancirinas , G-Cuádruplex , Modelos Moleculares , Ancirinas/química , Cristalografía por Rayos X , Humanos , Unión Proteica , Enlace de Hidrógeno
3.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339704

RESUMEN

This paper introduces an approach to the automated measurement and analysis of dairy cows using 3D point cloud technology. The integration of advanced sensing techniques enables the collection of non-intrusive, precise data, facilitating comprehensive monitoring of key parameters related to the health, well-being, and productivity of dairy cows. The proposed system employs 3D imaging sensors to capture detailed information about various parts of dairy cows, generating accurate, high-resolution point clouds. A robust automated algorithm has been developed to process these point clouds and extract relevant metrics such as dairy cow stature height, rump width, rump angle, and front teat length. Based on the measured data combined with expert assessments of dairy cows, the quality indices of dairy cows are automatically evaluated and extracted. By leveraging this technology, dairy farmers can gain real-time insights into the health status of individual cows and the overall herd. Additionally, the automated analysis facilitates efficient management practices and optimizes feeding strategies and resource allocation. The results of field trials and validation studies demonstrate the effectiveness and reliability of the automated 3D point cloud approach in dairy farm environments. The errors between manually measured values of dairy cow height, rump angle, and front teat length, and those calculated by the auto-measurement algorithm were within 0.7 cm, with no observed exceedance of errors in comparison to manual measurements. This research contributes to the burgeoning field of precision livestock farming, offering a technological solution that not only enhances productivity but also aligns with contemporary standards for sustainable and ethical animal husbandry practices.


Asunto(s)
Nube Computacional , Aprendizaje Profundo , Femenino , Bovinos , Animales , Reproducibilidad de los Resultados , Industria Lechera/métodos , Tecnología
4.
Nucleic Acids Res ; 49(13): 7588-7601, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34214172

RESUMEN

Human telomeres are composed of GGGTTA repeats and interspersed with variant repeats. The GGGCTA variant motif was identified in the proximal regions of human telomeres about 10 years ago and was shown to display a length-dependent instability. In parallel, a structural study showed that four GGGCTA repeats folded into a non-canonical G-quadruplex (G4) comprising a Watson-Crick GCGC tetrad. It was proposed that this non-canonical G4 might be an additional obstacle for telomere replication. In the present study, we demonstrate that longer GGGCTA arrays fold into G4 and into hairpins. We also demonstrate that replication protein A (RPA) efficiently binds to GGGCTA repeats structured into G4 but poorly binds to GGGCTA repeats structured into hairpins. Our results (along with results obtained with a more stable variant motif) suggest that GGGCTA hairpins are at the origin of GGGCTA length-dependent instability. They also suggest, as working hypothesis, that failure of efficient binding of RPA to GGGCTA structured into hairpins might be involved in the mechanism of GGGCTA array instability. On the basis of our present and past studies about telomeric G4 and their interaction with RPA, we propose an original point of view about telomeric G4 and the evolution of telomeric motifs.


Asunto(s)
Proteína de Replicación A/metabolismo , Telómero/química , ADN/química , G-Cuádruplex , Humanos , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Oligonucleótidos/química , Secuencias Repetitivas de Ácidos Nucleicos , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
5.
Nucleic Acids Res ; 49(3): 1724-1736, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33503265

RESUMEN

G-quadruplex (G4) DNA structures with a left-handed backbone progression have unique and conserved structural features. Studies on sequence dependency of the structures revealed the prerequisites and some minimal motifs required for left-handed G4 formation. To extend the boundaries, we explore the adaptability of left-handed G4s towards the existence of bulges. Here we present two X-ray crystal structures and an NMR solution structure of left-handed G4s accommodating one, two and three bulges. Bulges in left-handed G4s show distinct characteristics as compared to those in right-handed G4s. The elucidation of intricate structural details will help in understanding the possible roles and limitations of these unique structures.


Asunto(s)
ADN/química , G-Cuádruplex , Cristalografía por Rayos X , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Motivos de Nucleótidos , Azúcares/química
6.
Biochem Biophys Res Commun ; 613: 153-158, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35561583

RESUMEN

93del is a 16-nucleotide G-quadruplex-forming aptamer which can inhibit the activity of the HIV-1 integrase enzyme at nanomolar concentration. Previous structural analyses of 93del using NMR spectroscopy have shown that the aptamer forms an interlocked G-quadruplex structure in K+ solution. Due to its exceptional stability and unique topology, 93del has been used in many different studies involving DNA G-quadruplexes, such as DNA aptamer and multimer design, as well as DNA fluorescence research. To gain further insights on the structure of this unique aptamer, we have determined several high-resolution crystal structures of 93del and its variants. While confirming the overall dimeric interlocked G-quadruplex folding topology previously determined by NMR, our results reveal important detailed structural information, particularly the formation of a water-mediated A•G•G•G•G pentad. These insights allow us to better understand the formation of various structural elements in G-quadruplexes and should be useful for designing and manipulating G-quadruplex scaffolds with desired properties.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Integrasa de VIH , Aptámeros de Nucleótidos/química , Integrasa de VIH/metabolismo , Agua
7.
Biochem Biophys Res Commun ; 610: 113-118, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35462091

RESUMEN

In the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), expansion of the G4C2 hexanucleotide repeat in the gene C9orf72 is a most common known cause of the disease. Here we use atomic force microscopy (AFM) and gel electrophoresis to visualize the formation of higher-order structures by RNA G4C2 repeats in physiologically relevant conditions. For the RNA sequence r[G4C2G4], we observed G-wires with left-handed undulating features of 4.4-nm periodicity and a uniform height which is consistently higher than that of a duplex B-DNA. These higher-order structures were not degraded fully when treated with a mixture of RNase A and RNase T1. Similarly, higher-order structures were observed for sequences containing three or four G4C2 repeats, pointing towards their potential formation in longer sequence contexts. Our observations suggest that RNA G-quadruplex blocks and G-wires can accumulate in cells containing G4C2 repeat transcripts.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/química , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Humanos , ARN/genética
8.
J Autoimmun ; 131: 102857, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35780036

RESUMEN

Dysregulated T-cell activation is a hallmark of several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS). The lymphocyte cytosolic protein 2 (LCP2), also known as SLP-76, is essential for the development and activation of T cells. Despite the critical role of LCP2 in T-cell activation and the need for developing drugs that modify T-cell activation, no LCP2 inhibitors have been developed. This can be explained by the "undruggable" nature of LCP2, lacking a structure permissive to standard small molecule inhibitor modalities. Here, we explored an alternative drug modality, developing antisense oligonucleotides (ASOs) targeting LCP2 mRNAs, and evaluated its activity in modulating T-cell activation. We identified a set of 3' UTR targeting LCP2 ASOs, which knocked down LCP2 in a human T-cell line and primary human T cells and found that these suppressed T-cell receptor mediated activation. We also found that the ASOs suppressed FcεR1-mediated mast cell activation, in line with the role of LCP2 in mast cells. Taken together, our data provide examples of how immunomodulatory ASOs that interfere with undruggable targets can be developed and propose that such drug modalities can be used to treat autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Oligonucleótidos Antisentido , Línea Celular , Humanos , Activación de Linfocitos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Linfocitos T
9.
Nucleic Acids Res ; 48(19): 11162-11171, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32976598

RESUMEN

The triple-negative breast cancer (TNBC), a subtype of breast cancer which lacks of targeted therapies, exhibits a poor prognosis. It was shown recently that the PIM1 oncogene is highly related to the proliferation of TNBC cells. A quadruplex-duplex hybrid (QDH) forming sequence was recently found to exist near the transcription start site of PIM1. This structure could be an attractive target for regulation of the PIM1 gene expression and thus the treatment of TNBC. Here, we present the solution structures of two QDHs that could coexist in the human PIM1 gene. Form 1 is a three-G-tetrad-layered (3+1) G-quadruplex containing a propeller loop, a lateral loop and a stem-loop made up of three G•C Watson-Crick base pairs. On the other hand, Form 2 is an anti-parallel G-quadruplex comprising two G-tetrads and a G•C•G•C tetrad; the structure has three lateral loops with the middle stem-loop made up of two Watson-Crick G•C base pairs. These structures provide valuable information for the design of G-quadruplex-specific ligands for PIM1 transcription regulation.


Asunto(s)
ADN/química , G-Cuádruplex , Proteínas Proto-Oncogénicas c-pim-1/genética , Humanos , Sitio de Iniciación de la Transcripción , Neoplasias de la Mama Triple Negativas/genética
10.
Nucleic Acids Res ; 48(18): 10567-10575, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960213

RESUMEN

Beyond the consensus definition of G-quadruplex-forming motifs with tracts of continuous guanines, G-quadruplexes harboring bulges in the G-tetrad core are prevalent in the human genome. Here, we study the incorporation of a duplex hairpin within a bulge of a G-quadruplex. The NMR solution structure of a G-quadruplex containing a duplex bulge was resolved, revealing the structural details of the junction between the duplex bulge and the G-quadruplex. Unexpectedly, instead of an orthogonal connection the duplex stem was observed to stack below the G-quadruplex forming a unique quadruplex-duplex junction. Breaking up of the immediate base pair step at the junction, coupled with a narrowing of the duplex groove within the context of the bulge, led to a progressive transition between the quadruplex and duplex segments. This study revealed that a duplex bulge can be formed at various positions of a G-quadruplex scaffold. In contrast to a non-structured bulge, the stability of a G-quadruplex slightly increases with an increase in the duplex bulge size. A G-quadruplex structure containing a duplex bulge of up to 33 nt in size was shown to form, which was much larger than the previously reported 7-nt bulge. With G-quadruplexes containing duplex bulges representing new structural motifs with potential biological significance, our findings would broaden the definition of potential G-quadruplex-forming sequences.


Asunto(s)
ADN/ultraestructura , G-Cuádruplex , Guanina/química , Conformación de Ácido Nucleico , Emparejamiento Base , Secuencia de Bases , Dicroismo Circular , ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares
11.
Nucleic Acids Res ; 48(6): 3315-3327, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32100003

RESUMEN

G-rich DNA sequences with tracts of three or more continuous guanines (G≥3) are known to have high propensity to adopt stable G-quadruplex (G4) structures. Bioinformatic analyses suggest high prevalence of G-rich sequences with short G-tracts (G≤2) in the human genome. However, due to limited structural studies, the folding principles of such sequences remain largely unexplored and hence poorly understood. Here, we present the solution NMR structure of a sequence named AT26 consisting of irregularly spaced G2 tracts and two isolated single guanines. The structure is a four-layered G4 featuring two bi-layered blocks, locked between themselves in an unprecedented fashion making it a stable scaffold. In addition to edgewise and propeller-type loops, AT26 also harbors two V-shaped loops: a 2-nt V-shaped loop spanning two G-tetrad layers and a 0-nt V-shaped loop spanning three G-tetrad layers, which are named as VS- and VR-loop respectively, based on their distinct structural features. The intra-lock motif can be a basis for extending the G-tetrad core and a very stable intra-locked G4 can be formed by a sequence with G-tracts of various lengths including several G2 tracts. Findings from this study will aid in understanding the folding of G4 topologies from sequences containing irregularly spaced multiple short G-tracts.


Asunto(s)
ADN/ultraestructura , G-Cuádruplex , Conformación de Ácido Nucleico , Dicroismo Circular , ADN/química , Guanina/química , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Motivos de Nucleótidos/genética
12.
Am J Ind Med ; 65(7): 556-566, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35575411

RESUMEN

BACKGROUND: Incidence of drug poisoning deaths has increased during the coronavirus disease 2019 (COVID-19) pandemic. Previous research has established that risks differ for drug poisoning death according to occupation, and that workers also have a different risk for exposure to and death from COVID-19. This study sought to determine whether workers in certain occupations had drug poisoning mortality rates that increased in 2020 (the first year of the COVID-19 pandemic) compared to the average mortality rate for workers in those occupations during the previous 3 years. METHODS: Death certificates of Massachusetts residents who died from drug poisonings in 2017-2020 were obtained. Average mortality rates of drug poisoning according to occupation during the 2017-2019 period were compared to mortality rates in 2020. RESULTS: Between the 2017-2019 period and 2020, mortality rates of drug poisoning increased significantly for workers in three occupational groups: food preparation and serving; healthcare support; and transportation and material moving. In these occupations, most of the increases in 2020 compared to 2017-2019 occurred in months after COVID-19 pandemic cases and deaths increased in Massachusetts. CONCLUSION: Mortality rates from drug poisonings increased substantially in several occupations in 2020 compared to previous years. Further research should examine the role of occupational factors in this increase in drug poisoning mortality rates during the COVID-19 pandemic. Particular attention should be given to determine the role that exposure to severe acute respiratory syndrome coronavirus 2, work stress, and financial stress due to job insecurity played in these increases.


Asunto(s)
COVID-19 , Intoxicación , Humanos , Massachusetts/epidemiología , Ocupaciones , Pandemias , SARS-CoV-2
13.
Biochemistry ; 60(14): 1097-1107, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33750098

RESUMEN

Aberrant expansion of the hexanucleotide GGGGCC (or G4C2) repeat in the human C9ORF72 gene is the most common genetic factor found behind amyotrophic lateral sclerosis and frontotemporal dementia. The hypothesized pathways, through which the repeat expansions contribute to the pathology, involve one or more secondary structural forms of the DNA and/or RNA sequences, such as G-quadruplexes, duplexes, and hairpins. Here, we study the structures of DNA and RNA duplexes formed by G4C2 repeats, which contain G(syn)·G(anti) base pairs flanked by either G·C or C·G base pairs. We show that duplexes formed by G4C2 repeats contain alternately two types of G·G pair contexts exhibiting different syn-anti base flipping dynamics (∼100 ms vs ∼2 ms for DNA and ∼50 ms vs ∼20 ms for RNA at 10 °C, respectively) depending on the flanking bases, with the slow-flipping G·G pairs being flanked by a guanine at the 5'-end and the fast-flipping G·G pairs being flanked by a cytosine at the 5'-end. Our findings on the structures and dynamics of G·G base pairs in DNA and RNA duplexes formed by G4C2 repeats provide a foundation for further studies of the functions and targeting of such biologically relevant motifs.


Asunto(s)
Emparejamiento Base , ADN/química , ADN/genética , ARN/química , ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos
14.
Nucleic Acids Res ; 47(3): 1564-1572, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30551210

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) has emerged as an attractive target for cancer therapy due to its key role in DNA repair processes. Inhibition of PARP1 in BRCA-mutated cancers has been observed to be clinically beneficial. Recent genome-mapping experiments have identified a non-canonical G-quadruplex-forming sequence containing bulges within the PARP1 promoter. Structural features, like bulges, provide opportunities for selective chemical targeting of the non-canonical G-quadruplex structure within the PARP1 promoter, which could serve as an alternative therapeutic approach for the regulation of PARP1 expression. Here we report the G-quadruplex structure formed by a 23-nucleotide G-rich sequence in the PARP1 promoter. Our study revealed a three-layered intramolecular (3+1) hybrid G-quadruplex scaffold, in which three strands are oriented in one direction and the fourth in the opposite direction. This structure exhibits unique structural features such as an adenine bulge and a G·G·T base triple capping structure formed between the central edgewise loop, propeller loop and 5' flanking terminal. Given the highly important role of PARP1 in DNA repair and cancer intervention, this structure presents an attractive opportunity to explore the therapeutic potential of PARP1 inhibition via G-quadruplex DNA targeting.


Asunto(s)
ADN/química , G-Cuádruplex , Conformación de Ácido Nucleico , Poli(ADP-Ribosa) Polimerasa-1/química , Adenina/química , ADN/genética , Reparación del ADN/genética , Guanina/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Poli(ADP-Ribosa) Polimerasa-1/genética , Regiones Promotoras Genéticas
15.
Nucleic Acids Res ; 47(15): 8272-8281, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31216034

RESUMEN

Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.


Asunto(s)
ADN/química , G-Cuádruplex , Espectroscopía de Resonancia Magnética/métodos , Conformación de Ácido Nucleico , Dicroismo Circular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Modelos Moleculares , Soluciones/química , Espectrometría de Masa por Ionización de Electrospray , Difracción de Rayos X
16.
J Struct Biol ; 209(1): 107399, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586599

RESUMEN

G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5 Šresolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end G•G•G•G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end G•G•G•G and G•G•A•T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.


Asunto(s)
ARN Helicasas DEAD-box/ultraestructura , Proteínas de Unión al ADN/ultraestructura , G-Cuádruplex , Conformación de Ácido Nucleico , Secuencias de Aminoácidos/genética , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Humanos , Péptidos/química , Péptidos/genética , Unión Proteica/genética , Conformación Proteica en Hélice alfa/genética
17.
Biochem Biophys Res Commun ; 531(1): 62-66, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32220493

RESUMEN

G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure and the RHAU helicase has been identified to have high specificity for recognition of parallel-stranded G4s. We have designed and synthesized two stapled peptide analogues of the G4-specfic motif of RHAU, which preserve the G4 binding ability. Characterization of these peptides identified the stapled variants to exhibit higher helical formation propensity in aqueous buffer in comparison to the native RHAU sequence. Moreover, the stapled peptides exhibit superior enzymatic stability towards α-chymotrypsin. Our stapled RHAU peptides can serve as a new tool for targeting G4 nucleic acid structures.


Asunto(s)
ARN Helicasas DEAD-box/química , G-Cuádruplex , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , ARN Helicasas DEAD-box/síntesis química , ARN Helicasas DEAD-box/metabolismo , Humanos , Modelos Moleculares , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa
18.
J Am Chem Soc ; 141(45): 18038-18047, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31661272

RESUMEN

Cyclic dinucleotides have emerged as important secondary messengers and cell signaling molecules that regulate several cell responses. A guanine-deficit G-quadruplex structure formation by a sequence containing (4n - 1) guanines, n denoting the number of G-tetrad layers, was previously reported. Here, a (4n - 1) G-quadruplex structure is shown to be capable of binding guanine-containing dinucleotides in micromolar affinity. The guanine base of the dinucleotides interacts with a vacant G-triad, forming four additional Hoogsteen hydrogen bonds to complete a G-tetrad. Solution structures of two complexes, both comprised of a (4n - 1) G-quadruplex structure, one bound to a linear dinucleotide (d(AG)) and the other to a cyclic dinucleotide (cGAMP), are solved using NMR spectroscopy. The latter suggests sufficiently strong interaction between the guanine base of the dinucleotide and the vacant G-triad, which acts as an anchor point of binding. The binding interfaces from the two solution structures provide useful information for specific ligand design. The results also infer that other guanine-containing metabolites of a similar size have the capability of binding G-quadruplexes, potentially affecting the expression of the metabolites and functionality of the bound G-quadruplexes.


Asunto(s)
Fosfatos de Dinucleósidos/química , G-Cuádruplex , Fosfatos de Dinucleósidos/genética , Guanina/química , Enlace de Hidrógeno
19.
J Am Chem Soc ; 141(32): 12582-12591, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31322869

RESUMEN

The intricate arrangement of numerous and closely placed chromophores on nanoscale scaffolds can lead to key photonic applications ranging from optical waveguides and antennas to signal-enhanced fluorescent sensors. In this regard, the self-assembly of dye-appended DNA sequences into programmed photonic architectures is promising. However, the dense packing of dyes can result in not only compromised DNA assembly (leading to ill-defined structures and precipitates) but also to essentially nonfluorescent systems (due to π-π aggregation). Here, we introduce a two-step "tether and mask" strategy wherein large porphyrin dyes are first attached to short G-quadruplex-forming sequences and then reacted with per-O-methylated ß-cyclodextrin (PMßCD) caps, to form supramolecular synthons featuring the porphyrin fluor fixed into a masked porphyrin lantern (PL) state, due to intramolecular host-guest interactions in water. The PL-DNA sequences can then be self-assembled into cyclic architectures or unprecedented G-wires tethered with hundreds of porphyrin dyes. Importantly, despite the closely arrayed PL units (∼2 nm), the dyes behave as bright chromophores (up to 180-fold brighter than the analogues lacking the PMßCD masks). Since other self-assembling scaffolds, dyes, and host molecules can be used in this modular approach, this work lays out a general strategy for the bottom-up aqueous self-assembly of bright nanomaterials containing densely packed dyes.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , G-Cuádruplex , Nanoestructuras/química , Porfirinas/química , ADN/genética , ADN/efectos de la radiación , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , G-Cuádruplex/efectos de la radiación , Nanoestructuras/efectos de la radiación , Porfirinas/síntesis química , Porfirinas/efectos de la radiación , Rayos Ultravioleta , beta-Ciclodextrinas/química , beta-Ciclodextrinas/efectos de la radiación
20.
EMBO J ; 34(12): 1718-34, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25956747

RESUMEN

G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids, with various biological roles. However, structural features dictating their formation and/or function in vivo are unknown. In S. cerevisiae, the pathological persistency of G4 within the CEB1 minisatellite induces its rearrangement during leading-strand replication. We now show that several other G4-forming sequences remain stable. Extensive mutagenesis of the CEB25 minisatellite motif reveals that only variants with very short (≤ 4 nt) G4 loops preferentially containing pyrimidine bases trigger genomic instability. Parallel biophysical analyses demonstrate that shortening loop length does not change the monomorphic G4 structure of CEB25 variants but drastically increases its thermal stability, in correlation with the in vivo instability. Finally, bioinformatics analyses reveal that the threat for genomic stability posed by G4 bearing short pyrimidine loops is conserved in C. elegans and humans. This work provides a framework explanation for the heterogeneous instability behavior of G4-forming sequences in vivo, highlights the importance of structure thermal stability, and questions the prevailing assumption that G4 structures with short or longer loops are as likely to form in vivo.


Asunto(s)
G-Cuádruplex , Inestabilidad Genómica/genética , Repeticiones de Minisatélite/genética , Modelos Moleculares , Dicroismo Circular , Biología Computacional , Transferencia Resonante de Energía de Fluorescencia , Ingeniería Genética , Calor , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA