Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Cell ; 12(3): 377-89, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336904

RESUMEN

Chondrocyte hypertrophy is essential for endochondral bone development. Unexpectedly, we discovered that MEF2C, a transcription factor that regulates muscle and cardiovascular development, controls bone development by activating the gene program for chondrocyte hypertrophy. Genetic deletion of Mef2c or expression of a dominant-negative MEF2C mutant in endochondral cartilage impairs hypertrophy, cartilage angiogenesis, ossification, and longitudinal bone growth in mice. Conversely, a superactivating form of MEF2C causes precocious chondrocyte hypertrophy, ossification of growth plates, and dwarfism. Endochondral bone formation is exquisitely sensitive to the balance between MEF2C and the corepressor histone deacetylase 4 (HDAC4), such that bone deficiency of Mef2c mutant mice can be rescued by an Hdac4 mutation, and ectopic ossification in Hdac4 null mice can be diminished by a heterozygous Mef2c mutation. These findings reveal unexpected commonalities in the mechanisms governing muscle, cardiovascular, and bone development with respect to their regulation by MEF2 and class II HDACs.


Asunto(s)
Desarrollo Óseo/genética , Huesos/embriología , Cartílago/embriología , Condrocitos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Animales , Huesos/citología , Huesos/metabolismo , Células COS , Cartílago/citología , Cartílago/metabolismo , Diferenciación Celular/genética , Chlorocebus aethiops , Condrocitos/citología , Enanismo/genética , Enanismo/metabolismo , Enanismo/fisiopatología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Histona Desacetilasas/genética , Hipertrofia/genética , Hipertrofia/metabolismo , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Factores Reguladores Miogénicos/genética , Neovascularización Fisiológica/genética , Osteogénesis/genética
2.
J Clin Invest ; 118(1): 124-32, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18079970

RESUMEN

The adult heart responds to excessive neurohumoral signaling and workload by a pathological growth response characterized by hypertrophy of cardiomyocytes and activation of a fetal program of cardiac gene expression. These responses culminate in diminished pump function, ventricular dilatation, wall thinning, and fibrosis, and can result in sudden death. Myocyte enhancer factor-2 (MEF2) transcription factors serve as targets of the signaling pathways that drive pathological cardiac remodeling, but the requirement for MEF2 factors in the progression of heart disease in vivo has not been determined. MEF2A and MEF2D are the primary MEF2 factors expressed in the adult heart. To specifically determine the role of MEF2D in pathological cardiac remodeling, we generated mice with a conditional MEF2D allele. MEF2D-null mice were viable, but were resistant to cardiac hypertrophy, fetal gene activation, and fibrosis in response to pressure overload and beta-chronic adrenergic stimulation. Furthermore, we show in a transgenic mouse model that forced overexpression of MEF2D was sufficient to drive the fetal gene program and pathological remodeling of the heart. These results reveal a unique and important function for MEF2D in stress-dependent cardiac growth and reprogramming of gene expression in the adult heart.


Asunto(s)
Cardiomegalia/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/biosíntesis , Estrés Fisiológico/metabolismo , Disfunción Ventricular/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Dilatación Patológica/genética , Dilatación Patológica/metabolismo , Dilatación Patológica/patología , Femenino , Fibrosis , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Miocardio/patología , Miocitos Cardíacos/patología , Factores Reguladores Miogénicos/genética , Estrés Fisiológico/genética , Estrés Fisiológico/patología , Activación Transcripcional , Disfunción Ventricular/genética , Disfunción Ventricular/patología
3.
Biochem Biophys Res Commun ; 411(2): 335-41, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21726532

RESUMEN

Protein kinase D (PKD) regulates cardiac myocyte growth and contractility through phosphorylation of proteins such as class IIa histone deacetylases (HDACs) and troponin I (TnI). In response to agonists that activate G-protein-coupled receptors (GPCRs), PKD is phosphorylated by protein kinase C (PKC) on two serine residues (Ser-738 and Ser-742 in human PKD1) within an activation loop of the catalytic domain, resulting in stimulation of PKD activity. Here, we identify a novel PKC target site located adjacent to the auto-inhibitory pleckstrin homology (PH) domain in PKD. This site (Ser-412 in human PKD1) is conserved in each of the three PKD family members and is efficiently phosphorylated by multiple PKC isozymes in vitro. Employing a novel anti-phospho-Ser-412-specific antibody, we demonstrate that this site in PKD is rapidly phosphorylated in primary cardiac myocytes exposed to hypertrophic agonists, including norepinephrine (NE) and endothelin-1 (ET-1). Differential sensitivity of this event to pharmacological inhibitors of PKC, and data from in vitro enzymatic assays, suggest a predominant role for PKCδ in the control of PKD Ser-412 phosphorylation. Together, these data suggest a novel, signal-dependent mechanism for controlling PKD function in cardiac myocytes.


Asunto(s)
Cardiomegalia/enzimología , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Endotelina-1/farmacología , Células HEK293 , Humanos , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Norepinefrina/farmacología , Fosforilación , Proteína Quinasa C/genética
4.
J Pharmacol Exp Ther ; 337(2): 513-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325441

RESUMEN

Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I(Na)) would reduce ouabain's effect to cause cellular Na(+) loading and its detrimental metabolic (decrease of ATP) and functional (arrhythmias, contracture) effects. Therefore, we determined effects of ouabain on concentrations of intracellular sodium (Na(+)(i)) and high-energy phosphates using (23)Na and (31)P NMR, the amplitude of late I(Na) using the whole-cell patch-clamp technique, and contractility and electrical activity of guinea pig isolated hearts, papillary muscles, and ventricular myocytes in the absence and presence of inhibitors of late I(Na). Ouabain (1-1.3 µM) increased Na(+)(i) and late I(Na) of guinea pig isolated hearts and myocytes by 3.7- and 4.2-fold, respectively. The late I(Na) inhibitors ranolazine and tetrodotoxin significantly reduced ouabain-stimulated increases in Na(+)(i) and late I(Na). Reductions of ATP and phosphocreatine contents and increased diastolic tension in ouabain-treated hearts were also markedly attenuated by ranolazine. Furthermore, the ouabain-induced increase of late I(Na) was also attenuated by the Ca(2+)-calmodulin-dependent kinase I inhibitors KN-93 [N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide] and autocamide-2 related inhibitory peptide, but not by KN-92 [2-[N-(4'-methoxybenzenesulfonyl)]amino-N-(4'-chlorophenyl)-2-propenyl-N-methylbenzylamine phosphate]. We conclude that ouabain-induced Na(+) and Ca(2+) overload is ameliorated by the inhibition of late I(Na).


Asunto(s)
Inhibidores Enzimáticos/farmacología , Corazón/fisiología , Ouabaína/farmacología , Canales de Sodio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Acetanilidas/administración & dosificación , Acetanilidas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fenómenos Electrofisiológicos , Metabolismo Energético/efectos de los fármacos , Femenino , Cobayas , Pruebas de Función Cardíaca , Espectroscopía de Resonancia Magnética , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocardio/química , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/farmacología , Ranolazina , Sodio/análisis , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/administración & dosificación , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/administración & dosificación , Tetrodotoxina/farmacología
5.
Mol Cell Biol ; 27(2): 518-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17101791

RESUMEN

Skeletal muscle development is controlled by the myocyte enhancer factor (MEF2) and myogenic basic helix-loop-helix (bHLH) families of transcription factors, which associate and synergistically activate muscle gene expression. Muscle differentiation is further reinforced by positive-feedback loops in which myogenic bHLH proteins activate their own expression and the expression of MEF2, while MEF2 stimulates expression of myogenic bHLH genes and the Mef2c gene. Here we describe a myogenic negative-feedback loop that consists of MEF2 proteins and the transcriptional repressor histone deacetylase 9 (HDAC9). We show that the HDAC9 gene is a direct transcriptional target of MEF2 in vitro and in vivo. HDAC9 can associate with MEF2 proteins and suppress their transcriptional activity. The transcriptional repressor HDAC9 thus forms a negative-feedback loop in the transcriptional circuitry of muscle differentiation.


Asunto(s)
Histona Desacetilasas/metabolismo , Músculo Esquelético/citología , Factores Reguladores Miogénicos/fisiología , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Diferenciación Celular/fisiología , Línea Celular , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/genética , Factores de Transcripción MEF2 , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Datos de Secuencia Molecular , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Mutación , Factores Reguladores Miogénicos/genética , Proteínas Represoras/genética , Transducción de Señal
6.
Cancer Res ; 64(9): 3072-8, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15126343

RESUMEN

Down-regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) tumor suppressor gene expression is common in several malignancies including prostate, colon, and breast cancer. The mechanism that mediates this down-regulation is not known. Here, we report that down-regulation of CEACAM1 expression in prostate cancer cells occurs primarily at the transcriptional level and is mediated by Sp2, a member of the Sp family of transcription factors. Sp2 binds to the CEACAM1 promoter in vitro and in vivo, and transient overexpression of Sp2 down-regulates endogenous CEACAM1 expression in normal prostate epithelial cells. Sp2 appears to repress CEACAM1 gene expression by recruiting histone deacetylase activity to the CEACAM1 promoter. In human prostate cancer specimens, Sp2 expression is high in prostate cancer cells but low in normal prostate epithelial cells and is inversely correlated with CEACAM1 expression. Our studies show that transcriptional repression by Sp2 represents one mechanism by which CEACAM1 tumor suppressor gene is down-regulated in prostate cancer.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación/genética , Proteínas de Unión al ADN/genética , Neoplasias de la Próstata/genética , Factores de Transcripción/genética , Acetiltransferasas/antagonistas & inhibidores , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación/biosíntesis , Antígeno Carcinoembrionario , Moléculas de Adhesión Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas , Humanos , Ácidos Hidroxámicos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Factor de Transcripción Sp2 , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Nat Commun ; 7: 13710, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27966531

RESUMEN

Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen-Lysyl oxidase-like 2 (Loxl2)-is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-ß2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-ß2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.


Asunto(s)
Aminoácido Oxidorreductasas/fisiología , Insuficiencia Cardíaca/metabolismo , Miocardio/patología , Aminoácido Oxidorreductasas/sangre , Aminoácido Oxidorreductasas/metabolismo , Animales , Fibrosis/metabolismo , Humanos , Ratones Noqueados , Miocardio/metabolismo , Estrés Fisiológico
8.
J Am Heart Assoc ; 1(5): e002360, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23316291

RESUMEN

BACKGROUND: Despite the clear advantages of reperfusion in acute myocardial infarction, part of the myocardium is injured during reperfusion by reactive oxygen species. Reactive oxygen species activate apoptosis signal-regulating kinase-1, a key mediator in cell death. We hypothesized that inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion would protect the heart from ischemia-reperfusion injury. METHODS AND RESULTS: Male CD1 mice underwent transient coronary artery ligation (30 minutes) followed by reperfusion or underwent sham surgery (n=10 to 12 per group). A selective small-molecule inhibitor of apoptosis signal-regulating kinase-1 (GS-459679) was given immediately after reperfusion (10 or 30 mg/kg IP). Infarct size was measured early (at 24 hours, in a subgroup of mice) by triphenyl tetrazolium chloride staining and late (at 7 days) by Masson's trichrome staining for fibrosis. Apoptosis was assessed by measurement of caspase-3 activity and by determination of DNA fragmentation in cardiomyocytes bordering the infarct. Transthoracic echocardiography was performed before surgery and then at 24 hours and 7 days later. Treatment with GS-459679 at reperfusion led to a significant dose-related reduction in infarct size (31% for 10 mg/kg [P<0.001 versus vehicle] and 60% for 30 mg/kg [P<0.001 versus vehicle]), inhibition of apoptotic cell death, and preservation of left ventricular dimension and systolic function at both 24 hours and 7 days. CONCLUSIONS: Inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion limits infarct size and preserves left ventricular function in a model of acute myocardial infarction in the mouse.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Fragmentación del ADN/efectos de los fármacos , Ecocardiografía , Masculino , Ratones , Modelos Animales , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología
9.
FEBS Lett ; 584(3): 631-7, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20018189

RESUMEN

Class IIa histone deacetylases (HDACs) repress genes involved in pathological cardiac hypertrophy. The anti-hypertrophic action of class IIa HDACs is overcome by signals that promote their phosphorylation-dependent nuclear export. Several kinases have been shown to phosphorylate class IIa HDACs, including calcium/calmodulin-dependent protein kinase (CaMK), protein kinase D (PKD) and G protein-coupled receptor kinase (GRK). However, the identity of the kinase(s) responsible for phosphorylating class IIa HDACs during cardiac hypertrophy has remained controversial. We describe a novel and selective small molecule inhibitor of PKD, bipyridyl PKD inhibitor (BPKDi). BPKDi blocks signal-dependent phosphorylation and nuclear export of class IIa HDACs in cardiomyocytes and concomitantly suppresses hypertrophy of these cells. These studies define PKD as a principal cardiac class IIa HDAC kinase.


Asunto(s)
Histona Desacetilasas/metabolismo , Miocardio/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Immunoblotting , Inmunoprecipitación , Fosforilación , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
10.
J Med Chem ; 53(15): 5400-21, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20684591

RESUMEN

A novel 2,6-naphthyridine was identified by high throughput screen (HTS) as a dual protein kinase C/D (PKC/PKD) inhibitor. PKD inhibition in the heart was proposed as a potential antihypertrophic mechanism with application as a heart failure therapy. As PKC was previously identified as the immediate upstream activator of PKD, PKD vs PKC selectivity was essential to understand the effect of PKD inhibition in models of cardiac hypertrophy and heart failure. The present study describes the modification of the HTS hit to a series of prototype pan-PKD inhibitors with routine 1000-fold PKD vs PKC selectivity. Example compounds inhibited PKD activity in vitro, in cells, and in vivo following oral administration. Their effects on heart morphology and function are discussed herein.


Asunto(s)
Aminopiridinas/síntesis química , Naftiridinas/síntesis química , Proteína Quinasa C/antagonistas & inhibidores , Transporte Activo de Núcleo Celular , Administración Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacología , Animales , Antihipertensivos/síntesis química , Antihipertensivos/química , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Núcleo Celular/metabolismo , Histona Desacetilasas/metabolismo , Isoenzimas/antagonistas & inhibidores , Masculino , Modelos Moleculares , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/patología , Miocardio/metabolismo , Miocardio/patología , Naftiridinas/farmacocinética , Naftiridinas/farmacología , Fosforilación , Unión Proteica , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Relación Estructura-Actividad
11.
J Med Chem ; 53(15): 5422-38, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20684592

RESUMEN

The synthesis and biological evaluation of potent and selective PKD inhibitors are described herein. The compounds described in the present study selectively inhibit PKD among other putative HDAC kinases. The PKD inhibitors of the present study blunt phosphorylation and subsequent nuclear export of HDAC4/5 in response to diverse agonists. These compounds further establish the central role of PKD as an HDAC4/5 kinase and enhance the current understanding of cardiac myocyte signal transduction. The in vivo efficacy of a representative example compound on heart morphology is reported herein.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Aminopiridinas/síntesis química , Naftiridinas/síntesis química , Piperazinas/síntesis química , Proteína Quinasa C/antagonistas & inhibidores , 2,2'-Dipiridil/síntesis química , 2,2'-Dipiridil/farmacocinética , 2,2'-Dipiridil/farmacología , Transporte Activo de Núcleo Celular , Administración Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacología , Animales , Antihipertensivos/síntesis química , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/enzimología , Cardiomegalia/patología , Núcleo Celular/metabolismo , Histona Desacetilasas/metabolismo , Isoenzimas/antagonistas & inhibidores , Masculino , Modelos Moleculares , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/patología , Miocardio/metabolismo , Miocardio/patología , Naftiridinas/farmacocinética , Naftiridinas/farmacología , Fosforilación , Piperazinas/farmacocinética , Piperazinas/farmacología , Unión Proteica , Ratas , Ratas Endogámicas Dahl , Ratas Sprague-Dawley , Relación Estructura-Actividad
12.
Development ; 132(11): 2669-78, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15890826

RESUMEN

The vertebrate heart is assembled during embryogenesis in a modular manner from different populations of precursor cells. The right ventricular chamber and outflow tract are derived primarily from a population of progenitors known as the anterior heart field. These regions of the heart are severely hypoplastic in mutant mice lacking the myocyte enhancer factor 2C (MEF2C) and BOP transcription factors, suggesting that these cardiogenic regulatory factors may act in a common pathway for development of the anterior heart field and its derivatives. We show that Bop expression in the developing heart depends on the direct binding of MEF2C to a MEF2-response element in the Bop promoter that is necessary and sufficient to recapitulate endogenous Bop expression in the anterior heart field and its cardiac derivatives during mouse development. The Bop promoter also directs transcription in the skeletal muscle lineage, but only cardiac expression is dependent on MEF2. These findings identify Bop as an essential downstream effector gene of MEF2C in the developing heart, and reveal a transcriptional cascade involved in development of the anterior heart field and its derivatives.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/embriología , Ratones/embriología , Proteínas Musculares/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Southern Blotting , ADN Complementario/genética , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Hibridación in Situ , Factores de Transcripción MEF2 , Ratones Mutantes , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Oligonucleótidos , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA