RESUMEN
Hybrid organic-inorganic perovskites are famous for the diversity of their chemical compositions, phases, phase transitions, and associated physical properties. We use a combination of experimental and computational techniques to reveal a strong coupling between structure, magnetism, and spin splitting in a representative of the largest family of hybrid organic-inorganic perovskites: the formates. With the help of first-principles simulations, we find spin splitting in both conduction and valence bands of [NH2NH3]Co(HCOO)3 induced by spin-orbit interactions, which can reach up to 14 meV. Our magnetic measurements reveal that this material exhibits canted antiferromagnetism below 15.5 K. The direction of the associated antiferromagnetic order parameter is strongly coupled with spin splitting in the centrosymmetric phase, allowing for the creation and annihilation of spin splitting through the application of a magnetic field. Furthermore, the structural phase transition to the experimentally observed polar Pna21 phase completely changes the aforementioned spin splitting and its coupling to magnetic degrees of freedom. This reveals that in [NH2NH3]Co(HCOO)3, the structure and magnetism are strongly coupled to spin splitting and can be manipulated through electric and magnetic fields. We believe that our findings offer an important step toward a fundamental understanding and practical applications of materials with coupled properties.
RESUMEN
Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.
RESUMEN
The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.
Asunto(s)
Antineoplásicos , Hipertermia Inducida , Estructuras Metalorgánicas , Portadores de Fármacos , Campos MagnéticosRESUMEN
Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.
Asunto(s)
Hipertermia Inducida , Campos Magnéticos , Magnetospirillum/fisiología , Células A549 , Supervivencia Celular , Fluorescencia , Humanos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/ultraestructura , Magnetosomas/química , Magnetosomas/ultraestructura , Magnetospirillum/ultraestructura , Temperatura , Factores de TiempoRESUMEN
A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of â¼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.
RESUMEN
Ordered CoNiP nanowires with the same length of 4 µm and varying diameters (d = 100 nm-600 nm) were fabricated by electrodeposition of CoNiP onto polycarbonate templates. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirmed the quality of the fabricated nanowires. Magnetic measurements and theoretical analysis revealed that the magnetization reversal and magnetic anisotropy were significantly influenced by varying of the diameters of the nanowires. There existed a critical wire diameter (dc ≈ 276 nm), below which the magnetization reversal occurred via a coherent rotation mode, and above which the magnetization reversal occurred via a curling rotation mode. The easy axis of the magnetization tended to change in direction from parallel to perpendicular with respect to the wire axis as the wire diameter exceeded dc ≈ 276 nm. With increasing wire diameter, the coercive field (Hc) and the remanent to saturation magnetization ratio (Mr/Ms) were also found to rapidly decrease in the range d = 100-400 nm and gradually decrease for d > 400 nm.
RESUMEN
A new approach to develop highly ordered magnetite (Fe3O4) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3O4-filled nanohole arrays, while the as-synthesized Fe3O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3O4-filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties.
RESUMEN
The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy (Keff) in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on Tm3Fe5O12 (TmIG)/Pt bilayers grown on different substrates. We observe a significant drop in the LSSE voltage below 200 K independent of TmIG film thickness and substrate choice. This is attributed to the noticeable increases in effective magnetic anisotropy field, HKeff (âKeff) and α that occur within the same temperature range. From the TmIG thickness dependence of the LSSE voltage, we determined the temperature dependence of ⟨ξ⟩ and highlighted its correlation with the temperature-dependent HKeff and α in TmIG/Pt bilayers, which will be beneficial for the development of rare-earth iron garnet based efficient spincaloritronic nanodevices.
RESUMEN
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX2 , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.g., V-WS2 , V-WSe2 ). This phenomenon is attributed to excess holes in the conduction and valence bands, and carriers trapped in magnetic doping states, mediating the magnetization of the semiconducting layer. In 2D-TMD heterostructures (VSe2 /WS2 , VSe2 /MoS2 ), the significance of proximity, charge-transfer, and confinement effects in amplifying light-mediated magnetism is demonstrated. We attributed this to photon absorption at the TMD layer that generates electron-hole pairs mediating the magnetization of the heterostructure. These findings will encourage further research in the field of 2D magnetism and establish a novel design of 2D-TMDs and heterostructures with optically tunable magnetic functionalities, paving the way for next-generation magneto-optic nanodevices.
RESUMEN
We demonstrate the possibility of using a radio-frequency transverse susceptibility (TS) technique based on a sensitive self-resonant tunnel-diode oscillator as a biosensor for detection of cancer cells that have taken up magnetic nanoparticles. This technique can detect changes in frequency on the order of 10 Hz in 10 MHz. Therefore, a small sample of cells that have taken up nanoparticles when placed inside the sample space of the TS probe can yield a signal characteristic of the magnetic nanoparticles. As a proof of the concept, Fe3O4 nanoparticles coated with Au (mean size ~60 nm) were synthesized using a micellar method and these nanoparticles were introduced to the medium at different concentrations of 0.05, 0.1, 0.5, and 1 mg/mL buffer, where they were taken up by human embryonic kidney (HEK) cells via phagocytosis. While the highest concentration of Au-Fe3O4 nanoparticles (1 mg/mL) was found to give the strongest TS signal, it is notable that the TS signal of the nanoparticles could still be detected at concentrations as low as 0.1 mg/mL.
Asunto(s)
Técnicas Biosensibles/métodos , Rastreo Celular/métodos , Separación Inmunomagnética/métodos , Nanopartículas de Magnetita/análisis , Fagocitosis/fisiología , Células Cultivadas , Células HEK293 , Humanos , Nanopartículas de Magnetita/ultraestructura , Tamaño de la PartículaRESUMEN
The inherent existence of multi phases in iron oxide nanostructures highlights the significance of them being investigated deliberately to understand and possibly control the phases. Here, the effects of annealing at 250 °C with a variable duration on the bulk magnetic and structural properties of high aspect ratio biphase iron oxide nanorods with ferrimagnetic Fe3O4 and antiferromagnetic α-Fe2O3 are explored. Increasing annealing time under a free flow of oxygen enhanced the α-Fe2O3 volume fraction and improved the crystallinity of the Fe3O4 phase, identified in changes in the magnetization as a function of annealing time. A critical annealing time of approximately 3 h maximized the presence of both phases, as observed via an enhancement in the magnetization and an interfacial pinning effect. This is attributed to disordered spins separating the magnetically distinct phases which tend to align with the application of a magnetic field at high temperatures. The increased antiferromagnetic phase can be distinguished due to the field-induced metamagnetic transitions observed in structures annealed for more than 3 h and was especially prominent in the 9 h annealed sample. Our controlled study in determining the changes in volume fractions with annealing time will enable precise control over phase tunability in iron oxide nanorods, allowing custom-made phase volume fractions in different applications ranging from spintronics to biomedical applications.
RESUMEN
Recently, Heusler alloy-based spin gapless semiconductors (SGSs) with high Curie temperature (TC) and sizable spin polarization have emerged as potential candidates for tunable spintronic applications. We report comprehensive investigation of the temperature-dependent ANE and intrinsic longitudinal spin Seebeck effect (LSSE) in CoFeCrGa thin films grown on MgO substrates. Our findings show that the anomalous Nernst coefficient for the MgO/CoFeCrGa (95 nm) film is ≈1.86 µV K-1 at room temperature, which is nearly 2 orders of magnitude higher than that of the bulk polycrystalline sample of CoFeCrGa (≈0.018 µV K-1) and almost 3 orders of magnitude higher than that of the half-metallic ferromagnet La1-xNaxMnO3 (≈0.005 µV K-1) but comparable to that of the magnetic Weyl semimetal Co2MnGa thin film (≈2-3 µV K-1). Furthermore, the LSSE coefficient for our MgO/CoFeCrGa (95 nm)/Pt (5 nm) heterostructure is ≈20.5 nV K-1 Ω-1 at room temperature, which is twice larger than that of the half-metallic ferromagnetic La0.7Sr0.3MnO3 thin films (≈9 nV K-1 Ω-1). We show that both ANE and LSSE coefficients follow identical temperature dependences and exhibit a maximum at ≈225 K, which is understood as the combined effects of inelastic magnon scatterings and reduced magnon population at low temperatures. Our analyses not only indicate that the extrinsic skew scattering is the dominating mechanism for ANE in these films but also provide critical insights into the functional form of the observed temperature-dependent LSSE at low temperatures. Furthermore, by employing radio frequency transverse susceptibility and broad-band ferromagnetic resonance in combination with the LSSE measurements, we establish a correlation among the observed LSSE signal, magnetic anisotropy, and Gilbert damping of the CoFeCrGa thin films, which will be beneficial for fabricating tunable and highly efficient Heusler alloy-based spin caloritronic nanodevices.
RESUMEN
Among the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3 GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 - 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain-mediated vdW magnetism in this system. Here, the effects of pressure (0 - 20 GPa) are elucidated on the magnetic and structural properties of Fe3 GeTe2 by means of synchrotron Mössbauer source spectroscopy, X-ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 - 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.
RESUMEN
Helical magnets are emerging as a novel class of materials for spintronics and sensor applications; however, research on their charge- and spin-transport properties in a thin film form is less explored. Herein, we report the temperature and magnetic field-dependent charge transport properties of a highly crystalline MnP nanorod thin film over a wide temperature range (2 K < T < 350 K). The MnP nanorod films of ~100 nm thickness were grown on Si substrates at 500 °C using molecular beam epitaxy. The temperature-dependent resistivity ρ(T) data exhibit a metallic behavior (dρ/dT > 0) over the entire measured temperature range. However, large negative magnetoresistance (Δρ/ρ) of up to 12% is observed below ~50 K at which the system enters a stable helical (screw) magnetic state. In this temperature regime, the Δρ(H)/ρ(0) dependence also shows a magnetic field-manipulated CONE + FAN phase coexistence. The observed magnetoresistance is dominantly governed by the intergranular spin dependent tunneling mechanism. These findings pinpoint a correlation between the transport and magnetism in this helimagnetic system.
RESUMEN
The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K-the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics.
RESUMEN
Two-dimensional materials and their heterostructures have opened up new possibilities for magnetism at the nanoscale. In this study, we utilize first-principles simulations to investigate the structural, electronic, and magnetic properties of Fe/WSe2/Pt systems containing pristine, defective, or doped WSe2 monolayers. The proximity effects of the ferromagnetic Fe layer are studied by considering defective and vanadium-doped WSe2 monolayers. All heterostructures are found to be ferromagnetic, and the insertion of the transition-metal dichalcogenide results in a redistribution of spin orientation and an increased density of magnetic atoms due to the magnetized WSe2. There is an increase in the overall total density of states at the Fermi level due to WSe2; however, the transition-metal dichalcogenide may lose its distinct semiconducting properties due to the stronger than van der Waals coupling. Spin-resolved electronic structure properties are linked to larger spin Seebeck coefficients found in heterostructures with WSe2 monolayers.
RESUMEN
We report a systematic investigation of the magnetic properties including the exchange bias (EB) effect in an iron oxide nanocube system with tunable phase and average size (10, 15, 24, 34, and 43 nm). X-ray diffraction and Raman spectroscopy reveal the presence of Fe3O4, FeO, andα-Fe2O3phases in the nanocubes, in which the volume fraction of each phase varies depending upon particle size. While the Fe3O4phase is dominant in all and tends to grow with increasing particle size, the FeO phase appears to coexist with the Fe3O4phase in 10, 15, and 24 nm nanocubes but disappears in 34 and 43 nm nanocubes. The nanocubes exposed to air resulted in anα-Fe2O3oxidized surface layer whose thickness scaled with particle size resulting in a shell made ofα-Fe2O3phase and a core containing Fe3O4or a mixture of both Fe3O4and FeO phases. Magnetometry indicates that the nanocubes undergo Morin (of theα-Fe2O3phase) and Verwey (of the Fe3O4phase) transitions at â¼250 K and â¼120 K, respectively. For smaller nanocubes (10, 15, and 24 nm), the EB effect is observed below 200 K, of which the 15 nm nanocubes showed the most prominent EB with optimal antiferromagnetic (AFM) FeO phase. No EB is reported for larger nanocubes (34 and 43 nm). The observed EB effect is ascribed to the strong interfacial coupling between the ferrimagnetic (FiM) Fe3O4phase and AFM FeO phase, while its absence is related to the disappearance of the FeO phase. The Fe3O4/α-Fe2O3(FiM/AFM) interfaces are found to have negligible influence on the EB. Our findings shed light on the complexity of the EB effect in mixed-phase iron oxide nanosystems and pave the way to design exchange-coupled nanomaterials with desirable magnetic properties for biomedical and spintronic applications.
RESUMEN
A small DC magnetic field can induce an enormous response in the impedance of a soft magnetic conductor in various forms of wire, ribbon, and thin film. Also known as the giant magnetoimpedance (GMI) effect, this phenomenon forms the basis for the development of high-performance magnetic biosensors with magnetic field sensitivity down to the picoTesla regime at room temperature. Over the past decade, some state-of-the-art prototypes have become available for trial tests due to continuous efforts to improve the sensitivity of GMI biosensors for the ultrasensitive detection of biological entities and biomagnetic field detection of human activities through the use of magnetic nanoparticles as biomarkers. In this review, we highlight recent advances in the development of GMI biosensors and review medical devices for applications in biomedical diagnostics and healthcare monitoring, including real-time monitoring of respiratory motion in COVID-19 patients at various stages. We also discuss exciting research opportunities and existing challenges that will stimulate further study into ultrasensitive magnetic biosensors and healthcare monitors based on the GMI effect.
Asunto(s)
Técnicas Biosensibles , COVID-19 , COVID-19/diagnóstico , Atención a la Salud , Impedancia Eléctrica , Humanos , MagnetismoRESUMEN
Understanding the effects of phase transition, phase coexistence, and surface magnetism on the longitudinal spin Seebeck effect (LSSE) in a magnetic system is essential to manipulate the spin to charge current conversion efficiency for spincaloritronic applications. We aim to elucidate these effects by performing a comprehensive study of the temperature dependence of the LSSE in biphase iron oxide (BPIO = α-Fe2O3 + Fe3O4) thin films grown on Si (100) and Al2O3 (111) substrates. A combination of a temperature-dependent anomalous Nernst effect (ANE) and electrical resistivity measurements show that the contribution of the ANE from the BPIO layer is negligible in comparison to the intrinsic LSSE in the Si/BPIO/Pt heterostructure, even at room temperature. Below the Verwey transition of the Fe3O4 phase, the total signal across BPIO/Pt is dominated by the LSSE. Noticeable changes in the intrinsic LSSE signal for both Si/BPIO/Pt and Al2O3/BPIO/Pt heterostructures around the Verwey transition of the Fe3O4 phase and the antiferromagnetic (AFM) Morin transition of the α-Fe2O3 phase are observed. The LSSE signal for Si/BPIO/Pt is found to be almost 2 times greater than that for Al2O3/BPIO/Pt; however, an opposite trend is observed for the saturation magnetization. Magnetic force microscopy reveals the higher density of surface magnetic moments of the Si/BPIO film in comparison to the Al2O3/BPIO film, which underscores the dominant role of interfacial magnetism on the LSSE signal and thereby explains the larger LSSE for Si/BPIO/Pt.
RESUMEN
[This corrects the article DOI: 10.1039/D1RA07407E.].