Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 8(6): e1002740, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685402

RESUMEN

Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell level.


Asunto(s)
Núcleo Celular/virología , Tomografía con Microscopio Electrónico/métodos , Herpesvirus Humano 3/ultraestructura , Imagenología Tridimensional/métodos , Proteínas Nucleares/ultraestructura , Nucleocápside/ultraestructura , Factores de Transcripción/ultraestructura , Proteínas Supresoras de Tumor/ultraestructura , Línea Celular Tumoral , Núcleo Celular/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Confocal , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Proteína de la Leucemia Promielocítica
2.
J Comp Neurol ; 518(5): 647-67, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20034063

RESUMEN

Many patients with temporal lobe epilepsy display neuron loss in the dentate gyrus. One potential epileptogenic mechanism is loss of GABAergic interneurons and inhibitory synapses with granule cells. Stereological techniques were used to estimate numbers of gephyrin-positive punctae in the dentate gyrus, which were reduced short-term (5 days after pilocarpine-induced status epilepticus) but later rebounded beyond controls in epileptic rats. Stereological techniques were used to estimate numbers of synapses in electron micrographs of serial sections processed for postembedding GABA-immunoreactivity. Adjacent sections were used to estimate numbers of granule cells and glutamic acid decarboxylase-positive neurons per dentate gyrus. GABAergic neurons were reduced to 70% of control levels short-term, where they remained in epileptic rats. Integrating synapse and cell counts yielded average numbers of GABAergic synapses per granule cell, which decreased short-term and rebounded in epileptic animals beyond control levels. Axo-shaft and axo-spinous GABAergic synapse numbers in the outer molecular layer changed most. These findings suggest interneuron loss initially reduces numbers of GABAergic synapses with granule cells, but later, synaptogenesis by surviving interneurons overshoots control levels. In contrast, the average number of excitatory synapses per granule cell decreased short-term but recovered only toward control levels, although in epileptic rats excitatory synapses in the inner molecular layer were larger than in controls. These findings reveal a relative excess of GABAergic synapses and suggest that reports of reduced functional inhibitory synaptic input to granule cells in epilepsy might be attributable not to fewer but instead to abundant but dysfunctional GABAergic synapses.


Asunto(s)
Giro Dentado/patología , Epilepsia del Lóbulo Temporal/patología , Neuronas/patología , Sinapsis/patología , Ácido gamma-Aminobutírico/metabolismo , Animales , Recuento de Células , Convulsivantes , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Glutamato Descarboxilasa/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Microscopía Inmunoelectrónica , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Inhibición Neural/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Pilocarpina , Ratas , Recuperación de la Función/fisiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/fisiopatología , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA