Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 172658, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657813

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals. Here, we present the results of existing studies and testing at combustion-based thermal treatment facilities and summarize what is known regarding PFAS destruction and mineralization at such units. Available results suggest the temperature and residence times reached by some thermal treatment systems are generally favorable to the destruction of PFAS, but the possibility for PFAS or fluorinated organic byproducts to escape destruction and adequate mineralization and be released into the air cannot be ruled out. Few studies have been conducted at full-scale operating facilities, and none to date have attempted to characterize possible fluorinated organic products of incomplete combustion (PICs). Further, the ability of existing air pollution control (APC) systems, designed primarily for particulate and acid gas control, to reduce PFAS air emissions has not been determined. These data gaps remain primarily due to the previous lack of available methods to characterize PFAS destruction and PIC concentrations in facility air emissions. However, newly developed stack testing methods offer an improved understanding of the extent to which thermal waste treatment technologies successfully destroy and mineralize PFAS in these waste streams.

2.
Sci Total Environ ; 905: 167185, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37734620

RESUMEN

Landfills manage materials containing per- and polyfluoroalkyl substances (PFAS) from municipal solid waste (MSW) and other waste streams. This manuscript summarizes state and federal initiatives and critically reviews peer-reviewed literature to define best practices for managing these wastes and identify data gaps to guide future research. The objective is to inform stakeholders about waste-derived PFAS disposed of in landfills, PFAS emissions, and the potential for related environmental impacts. Furthermore, this document highlights data gaps and uncertainties concerning the fate of PFAS during landfill disposal. Most studies on this topic measured PFAS in liquid landfill effluent (leachate); comparatively fewer have attempted to estimate PFAS loading in landfills or other effluent streams such as landfill gas (LFG). In all media, the reported total PFAS heavily depends on waste types and the number of PFAS included in the analytical method. Early studies which only measured a small number of PFAS, predominantly perfluoroalkyl acids (PFAAs), likely report a significant underestimation of total PFAS. Major findings include relationships between PFAS effluent and landfill conditions - biodegradable waste increases PFAS transformation and leaching. Based on the results of multiple studies, it is estimated that 84% of PFAS loading to MSW landfills (7.2 T total) remains in the waste mass, while 5% leaves via LFG and 11% via leachate on an annual basis. The environmental impact of landfill-derived PFAS has been well-documented. Additional research is needed on PFAS in landfilled construction and demolition debris, hazardous, and industrial waste in the US.

3.
Chemosphere ; 222: 295-304, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30710759

RESUMEN

The northern cardinal (Cardinalis cardinalis) is a good indicator species for environmental contaminants because it does not migrate and its range covers a diversity of habitats, including metropolitan Atlanta, GA and the geographically isolated Hawaiian Islands. In addition, the cardinal is often found near people's homes, making it likely to be exposed to the same outdoor elements, including soil, groundwater, and air, that surrounding humans experience. In this study, blood serum concentrations of 12 per- and polyfluoroalkyl substances (PFASs) were measured in 40 cardinals from Atlanta and 17 cardinals from the Big Island (Hawaii), HI. We observed significantly higher median concentrations of four PFASs and significantly higher detection frequencies of seven PFASs in the cardinals from Atlanta, relative to the PFAS median concentrations and detection frequencies observed in the cardinals from Hawaii (α = 0.05). Among the PFASs measured, perfluorooctane sulfonate (PFOS) was observed in the highest concentrations. A linear regression model controlling for sex, age, and airport distance did not explain PFOS variation within the Atlanta samples, but a similar model explained 90% of PFOS variation within the Hawaii samples. To our knowledge, these are the first measurements of PFASs in northern cardinals.


Asunto(s)
Ácidos Alcanesulfónicos/sangre , Aves/metabolismo , Ecosistema , Fluorocarburos/sangre , Especies Centinela/metabolismo , Animales , Aves/sangre , Contaminantes Ambientales/análisis , Georgia , Hawaii , Humanos , Especies Centinela/sangre
4.
Toxicol Sci ; 145(1): 16-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25795653

RESUMEN

Considerable concern has been raised regarding research reproducibility both within and outside the scientific community. Several factors possibly contribute to a lack of reproducibility, including a failure to adequately employ statistical considerations during study design, bias in sample selection or subject recruitment, errors in developing data inclusion/exclusion criteria, and flawed statistical analysis. To address some of these issues, several publishers have developed checklists that authors must complete. Others have either enhanced statistical expertise on existing editorial boards, or formed distinct statistics editorial boards. Although the U.S. Environmental Protection Agency, Office of Research and Development, already has a strong Quality Assurance Program, an initiative was undertaken to further strengthen statistics consideration and other factors in study design and also to ensure these same factors are evaluated during the review and approval of study protocols. To raise awareness of the importance of statistical issues and provide a forum for robust discussion, a Community of Practice for Statistics was formed in January 2014. In addition, three working groups were established to develop a series of questions or criteria that should be considered when designing or reviewing experimental, observational, or modeling focused research. This article describes the process used to develop these study design guidance documents, their contents, how they are being employed by the Agency's research enterprise, and expected benefits to Agency science. The process and guidance documents presented here may be of utility for any research enterprise interested in enhancing the reproducibility of its science.


Asunto(s)
Investigación/normas , Reproducibilidad de los Resultados , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA