Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.039
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764290

RESUMEN

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismo
2.
Cell ; 186(15): 3261-3276.e20, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379839

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.


Asunto(s)
Inmunidad Innata , Nucleotidiltransferasas , Humanos , Animales , Nucleotidiltransferasas/metabolismo , Inmunidad Innata/genética , Transducción de Señal/genética , ADN/metabolismo , Receptores de Reconocimiento de Patrones
3.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36347253

RESUMEN

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Asunto(s)
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo , Peso Molecular
4.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931021

RESUMEN

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Antígenos HLA-A , Antígenos de Histocompatibilidad Clase I , Humanos
5.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644530

RESUMEN

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , CMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Burkholderia/enzimología , CMP Cíclico/química , Ciclización , Escherichia coli/enzimología , Modelos Moleculares , Mutación/genética , Nucleótidos Cíclicos/química , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
6.
Cell ; 184(5): 1188-1200.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33577765

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Macaca fascicularis , Glicoproteína de la Espiga del Coronavirus/química , Animales , Anticuerpos Neutralizantes , Linfocitos B/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Nanopartículas/administración & dosificación , Conejos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/sangre , Linfocitos T/inmunología , Carga Viral
7.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544385

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Asunto(s)
Bacterias/virología , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Inmunidad , Oligonucleótidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Ligandos , Mutagénesis/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Sistemas de Mensajero Secundario
8.
Cell ; 176(6): 1432-1446.e11, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827685

RESUMEN

The presence of DNA in the cytosol of mammalian cells is an unusual event that is often associated with genotoxic stress or viral infection. The enzyme cGAS is a sensor of cytosolic DNA that induces interferon and inflammatory responses that can be protective or pathologic, depending on the context. Along with other cytosolic innate immune receptors, cGAS is thought to diffuse throughout the cytosol in search of its DNA ligand. Herein, we report that cGAS is not a cytosolic protein but rather localizes to the plasma membrane via the actions of an N-terminal phosphoinositide-binding domain. This domain interacts selectively with PI(4,5)P2, and cGAS mutants defective for lipid binding are mislocalized to the cytosolic and nuclear compartments. Mislocalized cGAS induces potent interferon responses to genotoxic stress, but weaker responses to viral infection. These data establish the subcellular positioning of a cytosolic innate immune receptor as a mechanism that governs self-nonself discrimination.


Asunto(s)
Membrana Celular/fisiología , Nucleotidiltransferasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Citosol/fisiología , ADN Viral/genética , Femenino , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/fisiología , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Nucleotidiltransferasas/fisiología , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfatidilinositoles , Unión Proteica , Transducción de Señal/inmunología
9.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007416

RESUMEN

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Asunto(s)
ADN/metabolismo , Vigilancia Inmunológica/fisiología , Nucleotidiltransferasas/metabolismo , Animales , Benzofuranos/química , Benzofuranos/metabolismo , Sitios de Unión , Dominio Catalítico , Quimiotaxis/efectos de los fármacos , ADN/química , Humanos , Ratones , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad de la Especie , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiología
10.
Immunity ; 56(9): 1991-2005.e9, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659413

RESUMEN

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.


Asunto(s)
Antivirales , Drosophila , Animales , Drosophila melanogaster , GMP Cíclico , Mamíferos
11.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28867287

RESUMEN

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Cromosoma X/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Compensación de Dosificación (Genética) , Embrión no Mamífero/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Modelos Moleculares , Mutación , Piperidinas/metabolismo , Alineación de Secuencia , Tiofenos/metabolismo
12.
Cell ; 170(6): 1224-1233.e15, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28844692

RESUMEN

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/antagonistas & inhibidores , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Dominios Proteicos , Alineación de Secuencia
13.
Cell ; 166(6): 1411-1422.e16, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610567

RESUMEN

A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.


Asunto(s)
Complejo Mediador/química , Complejo Mediador/metabolismo , Modelos Moleculares , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , Regulación de la Expresión Génica , Espectrometría de Masas , Fosforilación , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell ; 161(2): 277-90, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860610

RESUMEN

Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair plucking, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Plucking hair at different densities leads to a regeneration of up to five times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α-secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells.


Asunto(s)
Folículo Piloso/citología , Células Madre/citología , Animales , Comunicación Celular , Quimiocina CCL2/metabolismo , Folículo Piloso/fisiología , Queratinocitos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Regeneración , Piel/citología , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Nature ; 628(8008): 657-663, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509367

RESUMEN

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Asunto(s)
Gasderminas , Myxococcales , Microscopía por Crioelectrón , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Myxococcales/química , Myxococcales/citología , Myxococcales/ultraestructura , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , Piroptosis
16.
Nature ; 625(7994): 360-365, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992757

RESUMEN

Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacteriófagos , Evasión Inmune , Multimerización de Proteína , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/ultraestructura , ADN Viral/química , ADN Viral/metabolismo , ADN Viral/ultraestructura
17.
Nature ; 625(7994): 352-359, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992756

RESUMEN

It was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems1-4, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes. Homologues of these anti-defence proteins are found in hundreds of phages that infect taxonomically diverse bacterial species. We show that the anti-Gabija protein Gad1 blocks the ability of the Gabija defence complex to cleave phage-derived DNA. Our data further reveal that the anti-Thoeris protein Tad2 is a 'sponge' that sequesters the immune signalling molecules produced by Thoeris TIR-domain proteins in response to phage infection. Our results demonstrate that phages encode an arsenal of anti-defence proteins that can disable a variety of bacterial defence mechanisms.


Asunto(s)
Fagos de Bacillus , Bacterias , Proteínas Virales , Fagos de Bacillus/clasificación , Fagos de Bacillus/genética , Fagos de Bacillus/inmunología , Fagos de Bacillus/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
Nature ; 626(8000): 905-911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355794

RESUMEN

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Asunto(s)
Artefactos , Rayos Láser , Mioglobina , Cristalografía/instrumentación , Cristalografía/métodos , Electrones , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efectos de la radiación , Fotones , Conformación Proteica/efectos de la radiación , Teoría Cuántica , Rayos X
19.
Nature ; 627(8005): 898-904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480887

RESUMEN

A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures1. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight 'train track' assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to 'back of an envelope' architectural blueprints.


Asunto(s)
Nanoestructuras , Proteínas , Cristalografía por Rayos X , Nanoestructuras/química , Proteínas/química , Proteínas/metabolismo , Microscopía Electrónica , Reproducibilidad de los Resultados
20.
Nature ; 626(7998): 435-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109936

RESUMEN

Many peptide hormones form an α-helix on binding their receptors1-4, and sensitive methods for their detection could contribute to better clinical management of disease5. De novo protein design can now generate binders with high affinity and specificity to structured proteins6,7. However, the design of interactions between proteins and short peptides with helical propensity is an unmet challenge. Here we describe parametric generation and deep learning-based methods for designing proteins to address this challenge. We show that by extending RFdiffusion8 to enable binder design to flexible targets, and to refining input structure models by successive noising and denoising (partial diffusion), picomolar-affinity binders can be generated to helical peptide targets by either refining designs generated with other methods, or completely de novo starting from random noise distributions without any subsequent experimental optimization. The RFdiffusion designs enable the enrichment and subsequent detection of parathyroid hormone and glucagon by mass spectrometry, and the construction of bioluminescence-based protein biosensors. The ability to design binders to conformationally variable targets, and to optimize by partial diffusion both natural and designed proteins, should be broadly useful.


Asunto(s)
Diseño Asistido por Computadora , Aprendizaje Profundo , Péptidos , Proteínas , Técnicas Biosensibles , Difusión , Glucagón/química , Glucagón/metabolismo , Mediciones Luminiscentes , Espectrometría de Masas , Hormona Paratiroidea/química , Hormona Paratiroidea/metabolismo , Péptidos/química , Péptidos/metabolismo , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/metabolismo , Especificidad por Sustrato , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA