Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Regul Toxicol Pharmacol ; 138: 105309, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481280

RESUMEN

Virtual Control Groups (VCGs) based on Historical Control Data (HCD) in preclinical toxicity testing have the potential to reduce animal usage. As a case study we retrospectively analyzed the impact of replacing Concurrent Control Groups (CCGs) with VCGs on the treatment-relatedness of 28 selected histopathological findings reported in either rat or dog in the eTOX database. We developed a novel methodology whereby statistical predictions of treatment-relatedness using either CCGs or VCGs of varying covariate similarity to CCGs were compared to designations from original toxicologist reports; and changes in agreement were used to quantify changes in study outcomes. Generally, the best agreement was achieved when CCGs were replaced with VCGs with the highest level of similarity; the same species, strain, sex, administration route, and vehicle. For example, balanced accuracies for rat findings were 0.704 (predictions based on CCGs) vs. 0.702 (predictions based on VCGs). Moreover, we identified covariates which resulted in poorer identification of treatment-relatedness. This was related to an increasing incidence rate divergence in HCD relative to CCGs. Future databases which collect data at the individual animal level including study details such as animal age and testing facility are required to build adequate VCGs to accurately identify treatment-related effects.


Asunto(s)
Pruebas de Toxicidad , Ratas , Animales , Perros , Estudios Retrospectivos , Grupos Control , Bases de Datos Factuales
2.
Regul Toxicol Pharmacol ; 138: 105308, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481279

RESUMEN

Preclinical inter-species concordance can increase the predictivity of observations to the clinic, potentially reducing drug attrition caused by unforeseen adverse events. We quantified inter-species concordance of histopathological findings and target organ toxicities across four preclinical species in the eTOX database using likelihood ratios (LRs). This was done whilst only comparing findings between studies with similar compound exposure (Δ|Cmax| ≤ 1 log-unit), repeat-dosing duration, and animals of the same sex. We discovered 24 previously unreported significant inter-species associations between histopathological findings encoded by the HPATH ontology. More associations with strong positive concordance (33% LR+ > 10) relative to strong negative concordance (12.5% LR- < 0.1) were identified. Of the top 10 most positively concordant associations, 60% were computed between different histopathological findings indicating potential differences in inter-species pathogenesis. We also observed low inter-species target organ toxicity concordance. For example, liver toxicity concordance in short-term studies between female rats and dogs observed an average LR+ of 1.84, and an average LR- of 0.73. This was corroborated by similarly low concordance between rodents and non-rodents for 75 candidate drugs in AstraZeneca. This work provides new statistically significant associations between preclinical species, but finds that concordance is rare, particularly between the absence of findings.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Femenino , Ratas , Perros , Bases de Datos Factuales , Proyectos de Investigación
3.
Learn Behav ; 45(3): 252-262, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28205186

RESUMEN

Operant testing is a widely used and highly effective method of studying cognition in rodents. Performance on such tasks is sensitive to reinforcer strength. It is therefore advantageous to select effective reinforcers to minimize training times and maximize experimental throughput. To quantitatively investigate the control of behavior by different reinforcers, performance of mice was tested with either strawberry milkshake or a known powerful reinforcer, super saccharin (1.5% or 2% (w/v) saccharin/1.5% (w/v) glucose/water mixture). Mice were tested on fixed (FR)- and progressive-ratio (PR) schedules in the touchscreen-operant testing system. Under an FR schedule, both the rate of responding and number of trials completed were higher in animals responding for strawberry milkshake versus super saccharin. Under a PR schedule, mice were willing to emit similar numbers of responses for strawberry milkshake and super saccharin; however, analysis of the rate of responding revealed a significantly higher rate of responding by animals reinforced with milkshake versus super saccharin. To determine the impact of reinforcer strength on cognitive performance, strawberry milkshake and super saccharin-reinforced animals were compared on a touchscreen visual discrimination task. Animals reinforced by strawberry milkshake were significantly faster to acquire the discrimination than animals reinforced by super saccharin. Taken together, these results suggest that strawberry milkshake is superior to super saccharin for operant behavioral testing and further confirms that the application of response rate analysis to multiple ratio tasks is a highly sensitive method for the detection of behavioral differences relevant to learning and motivation.


Asunto(s)
Condicionamiento Operante , Refuerzo en Psicología , Animales , Aprendizaje Discriminativo , Masculino , Ratones , Esquema de Refuerzo
4.
Neuropsychopharmacology ; 49(2): 422-432, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644210

RESUMEN

Effort-based decision-making is impaired in multiple psychopathologies leading to significant impacts on the daily life of patients. Preclinical studies of this important transdiagnostic symptom in rodents are hampered, however, by limitations present in currently available decision-making tests, including the presence of delayed reinforcement and off-target cognitive demands. Such possible confounding factors can complicate the interpretation of results in terms of decision-making per se. In this study we addressed this problem using a novel touchscreen Rearing-Effort Discounting (RED) task in which mice choose between two single-touch responses: rearing up to touch an increasingly higher positioned stimulus to obtain a High Reward (HR) or touching a lower stimulus to obtain a Low Reward (LR). To explore the putative advantages of this new approach, RED was compared with a touchscreen version of the well-studied Fixed Ratio-based Effort Discounting (FRED) task, in which multiple touches are required to obtain an HR, and a single response is required to obtain an LR. Results from dopaminergic (haloperidol and d-amphetamine), behavioral (changes in the order of effort demand; fixed-ratio schedule in FRED or response height in RED), and dietary manipulations (reward devaluation by pre-feeding) were consistent with the presence of variables that may complicate interpretation of conventional decision-making tasks, and demonstrate how RED appears to minimize such variables.


Asunto(s)
Dextroanfetamina , Haloperidol , Humanos , Ratones , Animales , Haloperidol/farmacología , Dextroanfetamina/farmacología , Refuerzo en Psicología , Recompensa , Antagonistas de Dopamina/farmacología , Toma de Decisiones/fisiología , Motivación
5.
Neuropsychopharmacology ; 49(3): 600-608, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37914893

RESUMEN

Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.


Asunto(s)
Citalopram , Serotonina , Humanos , Ratas , Animales , Serotonina/fisiología , Citalopram/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Refuerzo en Psicología , Aprendizaje Inverso/fisiología
6.
Transl Psychiatry ; 14(1): 34, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238285

RESUMEN

Metformin, a primary anti-diabetic medication, has been anticipated to provide benefits for Alzheimer's disease (AD), also known as "type 3 diabetes". Nevertheless, some studies have demonstrated that metformin may trigger AD pathology and even elevate AD risk in humans. Despite this, limited research has elucidated the behavioral outcomes of metformin treatment, which would hold significant translational value. Thus, we aimed to perform thorough behavioral research on the prolonged administration of metformin to mice: We administered metformin (300 mg/kg/day) to transgenic 3xTg-AD and non-transgenic (NT) C57BL/6 mice over 1 and 2 years, respectively, and evaluated their behaviors across multiple domains via touchscreen operant chambers, including motivation, attention, memory, visual discrimination, and cognitive flexibility. We found metformin enhanced attention, inhibitory control, and associative learning in younger NT mice (≤16 months). However, chronic treatment led to impairments in memory retention and discrimination learning at older age. Furthermore, metformin caused learning and memory impairment and increased levels of AMPKα1-subunit, ß-amyloid oligomers, plaques, phosphorylated tau, and GSK3ß expression in AD mice. No changes in potential confounding factors on cognition, including levels of motivation, locomotion, appetite, body weight, blood glucose, and serum vitamin B12, were observed in metformin-treated AD mice. We also identified an enhanced amyloidogenic pathway in db/db mice, as well as in Neuro2a-APP695 cells and a decrease in synaptic markers, such as PSD-95 and synaptophysin in primary neurons, upon metformin treatment. Our findings collectively suggest that the repurposing of metformin should be carefully reconsidered when this drug is used for individuals with AD.


Asunto(s)
Enfermedad de Alzheimer , Metformina , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Proteínas tau/metabolismo , Reposicionamiento de Medicamentos , Ratones Endogámicos C57BL , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Cognición , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
7.
Nat Neurosci ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849524

RESUMEN

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.

8.
Mol Metab ; 66: 101604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184065

RESUMEN

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Asunto(s)
Ingestión de Alimentos , Neuronas , Receptores Acoplados a Proteínas G , Animales , Ratones , Hipotálamo/citología , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
9.
Transl Psychiatry ; 10(1): 377, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149110

RESUMEN

Perseveration and apathy are two of the most common behavioural and psychological symptoms of dementia (BPSDs) in amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). Availability of a validated and behaviourally characterised animal model is crucial for translational research into BPSD in the FTD context. We behaviourally evaluated the male TDP-43Q331K mouse, an ALS-FTD model with a human-equivalent mutation (TDP-43Q331K) knocked into the endogenous Tardbp gene. We utilised a panel of behavioural tasks delivered using the rodent touchscreen apparatus, including progressive ratio (PR), extinction and visual discrimination/reversal learning (VDR) assays to examine motivation, response inhibition and cognitive flexibility, respectively. Relative to WT littermates, TDP-43Q331K mice exhibited increased responding under a PR schedule. While elevated PR responding is typically an indication of increased motivation for reward, a trial-by-trial response rate analysis revealed that TDP-43Q331K mice exhibited decreased maximal response rate and slower response decay rate, suggestive of reduced motivation and a perseverative behavioural phenotype, respectively. In the extinction assay, TDP-43Q331K mice displayed increased omissions during the early phase of each session, consistent with a deficit in activational motivation. Finally, the VDR task revealed cognitive inflexibility, manifesting as stimulus-bound perseveration. Together, our data indicate that male TDP-43Q331K mice exhibit a perseverative phenotype with some evidence of apathy-like behaviour, similar to BPSDs observed in human ALS-FTD patients. The TDP-43Q331K knock-in mouse therefore has features that recommend it as a useful platform to facilitate translational research into behavioural symptoms in the context of ALS-FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Apatía , Demencia Frontotemporal , Anciano , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Humanos , Masculino , Ratones , Mutación
10.
Psychopharmacology (Berl) ; 236(1): 449-461, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30306228

RESUMEN

This review is concerned with methods for assessing the processing of unrewarded responses in experimental animals and the mechanisms underlying performance of these tasks. A number of clinical populations, including Parkinson's disease, depression, compulsive disorders, and schizophrenia demonstrate either abnormal processing or learning from non-rewarded responses in laboratory-based reinforcement learning tasks. These effects are hypothesized to result from disturbances in modulatory neurotransmitter systems, including dopamine and serotonin. Parallel work in experimental animals has revealed consistent behavioral patterns associated with non-reward and, consistent with the human literature, modulatory roles for specific neurotransmitters. Classical tests involving an important reward omission component include appetitive extinction, ratio schedules of responding, reversal learning, and delay and probability discounting procedures. In addition, innovative behavioral tests have recently been developed leverage probabilistic feedback to specifically assay accommodation of, and learning from, non-rewarded responses. These procedures will be described and reviewed with discussion of the behavioral and neural determinants of performance. A final section focusses specifically on the benefits of trial-by-trial analysis of responding during such tasks, and the implications of such analyses for the translation of findings to clinical studies.


Asunto(s)
Encéfalo/fisiología , Modelos Animales de Enfermedad , Neurotransmisores/metabolismo , Recompensa , Investigación Biomédica Traslacional , Animales , Aprendizaje por Asociación/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Descuento por Demora/fisiología , Dopamina/metabolismo , Humanos , Masculino , Motivación/fisiología , Refuerzo en Psicología , Aprendizaje Inverso/fisiología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Serotonina/metabolismo
11.
Neuropsychopharmacology ; 44(6): 1068-1075, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30478410

RESUMEN

Disruptions to motivated behaviour are a highly prevalent and severe symptom in a number of neuropsychiatric and neurodegenerative disorders. Current treatment options for these disorders have little or no effect upon motivational impairments. We assessed the contribution of muscarinic acetylcholine receptors to motivated behaviour in mice, as a novel pharmacological target for motivational impairments. Touchscreen progressive ratio (PR) performance was facilitated by the nonselective muscarinic receptor antagonist scopolamine as well as the more subtype-selective antagonists biperiden (M1) and tropicamide (M4). However, scopolamine and tropicamide also produced increases in non-specific activity levels, whereas biperiden did not. A series of control tests suggests the effects of the mAChR antagonists were sensitive to changes in reward value and not driven by changes in satiety, motor fatigue, appetite or perseveration. Subsequently, a sub-effective dose of biperiden was able to facilitate the effects of amphetamine upon PR performance, suggesting an ability to enhance dopaminergic function. Both biperiden and scopolamine were also able to reverse a haloperidol-induced deficit in PR performance, however only biperiden was able to rescue the deficit in effort-related choice (ERC) performance. Taken together, these data suggest that the M1 mAChR may be a novel target for the pharmacological enhancement of effort exertion and consequent rescue of motivational impairments. Conversely, M4 receptors may inadvertently modulate effort exertion through regulation of general locomotor activity levels.


Asunto(s)
Antipsicóticos/efectos adversos , Apatía/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Biperideno/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Motivación/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Desempeño Psicomotor/efectos de los fármacos , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M4/antagonistas & inhibidores , Escopolamina/farmacología , Tropicamida/farmacología , Animales , Disfunción Cognitiva/inducido químicamente , Modelos Animales de Enfermedad , Haloperidol/farmacología , Ratones , Ratones Endogámicos C57BL
12.
Front Neurol ; 10: 858, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447770

RESUMEN

Apathy is pervasive across many neuropsychiatric disorders but is poorly characterized mechanistically, so targeted therapeutic interventions remain elusive. A key impediment has been the lack of validated assessment tools to facilitate translation of promising findings between preclinical disease models and patients. Apathy is a common symptom in Huntington's disease. Due to its established genetic basis and the availability of defined animal models, this disease offers a robust translational framework for linking motivated behavior with underlying neurobiology and an ideal context in which to evaluate a quantitative, translational apathy assessment method. In this study we therefore aimed to demonstrate the validity of using touchscreen-delivered progressive ratio tasks to mirror apathy assessment in Huntington's disease patients and a representative mouse model. To do this we evaluated Huntington's disease patients (n = 23) and age-matched healthy controls (n = 20), and male R6/1 mice (n = 23) and wildtype controls (n = 29) for apathy-like behavior using touchscreen-delivered progressive ratio tasks. The primary outcome measure of the assessment was breakpoint, defined as the highest number of touchscreen responses emitted before task engagement ceased. Patients and R6/1 mice were both found to exhibit significantly reduced breakpoints relative to their respective control groups, consistent with apathy-like behavior. This performance was also not associated with motoric differences in either species. These data demonstrate the utility of touchscreen-delivered progressive ratio tasks in detecting clinically relevant motivational deficits in Huntington's disease. This approach may offer a platform from which clinically relevant mechanistic insights concerning motivation symptoms can be derived and provide an effective route for translation of promising preclinical findings into viable therapeutic interventions.

13.
Mol Brain ; 12(1): 37, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971312

RESUMEN

Genetic and pharmacological manipulations targeting metabotropic glutamate receptor 5 (mGluR5) affect performance in behavioural paradigms that depend on cognitive flexibility. Many of these studies involved exposing mice to highly stressful conditions including electric foot shocks or water immersion and forced swimming. Because mGluR5 is also implicated in resilience and stress responses, however, apparent impairments in inhibitory learning may have been an artifact of manipulation-induced changes in affective state. To address this, we present here a characterization of cognitive flexibility in mGluR5 knockout (KO) mice conducted with a rodent touchscreen cognitive assessment apparatus in which the animals experience significantly less stress.Our results indicate a significant reversal learning impairment relative to wild-type (WT) controls in the two-choice Visual Discrimination-Reversal (VDR) paradigm. Upon further analysis, we found that this deficit is primarily driven by a prolonged period of perseveration in the early phase of reversal. We also observed a similar perseveration phenotype in the KO mice in the Extinction (EXT) paradigm. In addition, mGluR5 KO mice show higher breakpoints in the touchscreen Progressive Ratio (PR) and altered decision making in the Effort-related Choice (ERC) tasks. Interestingly, this impairment in PR is an additional manifestation of an increased propensity to perseverate on the emission of relatively simplistic behavioural outputs.Together, these findings suggest that under conditions of low stress, mGluR5 KO mice exhibit a pronounced perseverative phenotype that blunts cognitive flexibility.


Asunto(s)
Conducta Animal , Receptor del Glutamato Metabotropico 5/deficiencia , Estrés Psicológico/patología , Animales , Conducta de Elección , Toma de Decisiones , Discriminación en Psicología , Extinción Psicológica , Conducta Alimentaria , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Análisis y Desempeño de Tareas , Percepción Visual
14.
Psychopharmacology (Berl) ; 236(8): 2307-2323, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31218428

RESUMEN

RATIONALE: Dopamine D2-like receptors (D2R) are important drug targets in schizophrenia and Parkinson's disease, but D2R ligands also cause cognitive inflexibility such as poor reversal learning. The specific role of D2R in reversal learning remains unclear. OBJECTIVES: We tested the hypotheses that D2R agonism impairs reversal learning by blocking negative feedback and that antagonism of D1-like receptors (D1R) impairs learning from positive feedback. METHODS: Male Lister Hooded rats were trained on a novel visual reversal learning task. Performance on "probe trials", during which the correct or incorrect stimulus was presented with a third, probabilistically rewarded (50% of trials) and therefore intermediate stimulus, revealed individual learning curves for the processes of positive and negative feedback. The effects of D2R and D1R agonists and antagonists were evaluated. A separate cohort was tested on a spatial probabilistic reversal learning (PRL) task after D2R agonism. Computational reinforcement learning modelling was applied to choice data from the PRL task to evaluate the contribution of latent factors. RESULTS: D2R agonism with quinpirole dose-dependently impaired both visual reversal and PRL. Analysis of the probe trials on the visual task revealed a complete blockade of learning from negative feedback at the 0.25 mg/kg dose, while learning from positive feedback was intact. Estimated parameters from the model that best described the PRL choice data revealed a steep and selective decrease in learning rate from losses. D1R antagonism had a transient effect on the positive probe trials. CONCLUSIONS: D2R stimulation impairs reversal learning by blocking the impact of negative feedback.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Estimulación Luminosa/métodos , Receptores de Dopamina D2/metabolismo , Aprendizaje Inverso/fisiología , Percepción Espacial/fisiología , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Masculino , Ratas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Aprendizaje Inverso/efectos de los fármacos , Percepción Espacial/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
15.
Curr Biol ; 28(16): 2557-2569.e4, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30100338

RESUMEN

The central cholinergic system and the amygdala are important for motivation and mnemonic processes. Different cholinergic populations innervate the amygdala, but it is unclear how these projections impact amygdala processes. Using optogenetic circuit-mapping strategies in choline acetyltransferase (ChAT)-cre mice, we demonstrate that amygdala-projecting basal forebrain and brainstem ChAT-containing neurons can differentially affect amygdala circuits and behavior. Photo-activating ChAT terminals in vitro revealed the underlying synaptic impact of brainstem inputs to the central lateral division to be excitatory, mediated via the synergistic glutamatergic activation of AMPA and NMDA receptors. In contrast, stimulating basal forebrain inputs to the basal nucleus resulted in endogenous acetylcholine (ACh) release, resulting in biphasic inhibition-excitation responses onto principal neurons. Such response profiles are physiological hallmarks of neural oscillations and could thus form the basis of ACh-mediated rhythmicity in amygdala networks. Consistent with this, in vivo basal forebrain ChAT+ activation strengthened amygdala basal nucleus theta and gamma frequency rhythmicity, both of which continued for seconds after stimulation and were dependent on local muscarinic and nicotinic receptor activation, respectively. Activation of brainstem ChAT-containing neurons, however, resulted in a transient increase in central lateral amygdala activity that was independent of cholinergic receptors. In addition, driving these respective inputs in behaving animals induced opposing appetitive and defensive learning-related behavioral changes. Because learning and memory are supported by both cellular and network-level processes in central cholinergic and amygdala networks, these results provide a route by which distinct cholinergic inputs can convey salient information to the amygdala and promote associative biophysical changes that underlie emotional memories.


Asunto(s)
Amígdala del Cerebelo/fisiología , Prosencéfalo Basal/fisiología , Tronco Encefálico/fisiología , Neuronas Colinérgicas/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Animales , Colina O-Acetiltransferasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Optogenética
16.
Psychopharmacology (Berl) ; 235(7): 2101-2111, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29682701

RESUMEN

RATIONALE: Dysregulation of the serotonin (5-HT) system is a pathophysiological component in major depressive disorder (MDD), a condition closely associated with abnormal emotional responsivity to positive and negative feedback. However, the precise mechanism through which 5-HT tone biases feedback responsivity remains unclear. 5-HT2C receptors (5-HT2CRs) are closely linked with aspects of depressive symptomatology, including abnormalities in reinforcement processes and response to stress. Thus, we aimed to determine the impact of 5-HT2CR function on response to feedback in biased reinforcement learning. METHODS: We used two touchscreen assays designed to assess the impact of positive and negative feedback on probabilistic reinforcement in mice, including a novel valence-probe visual discrimination (VPVD) and a probabilistic reversal learning procedure (PRL). Systemic administration of a 5-HT2CR agonist and antagonist resulted in selective changes in the balance of feedback sensitivity bias on these tasks. RESULTS: Specifically, on VPVD, SB 242084, the 5-HT2CR antagonist, impaired acquisition of a discrimination dependent on appropriate integration of positive and negative feedback. On PRL, SB 242084 at 1 mg/kg resulted in changes in behaviour consistent with reduced sensitivity to positive feedback. In contrast, WAY 163909, the 5-HT2CR agonist, resulted in changes associated with increased sensitivity to positive feedback and decreased sensitivity to negative feedback. CONCLUSIONS: These results suggest that 5-HT2CRs tightly regulate feedback sensitivity bias in mice with consequent effects on learning and cognitive flexibility and specify a framework for the influence of 5-HT2CRs on sensitivity to reinforcement.


Asunto(s)
Aminopiridinas/farmacología , Azepinas/farmacología , Indoles/farmacología , Receptor de Serotonina 5-HT2C , Aprendizaje Inverso/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Trastorno Depresivo Mayor , Aprendizaje Discriminativo/efectos de los fármacos , Masculino , Ratones , Aprendizaje por Probabilidad , Refuerzo en Psicología , Análisis y Desempeño de Tareas , Percepción Visual
17.
Nat Neurosci ; 21(4): 552-563, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29556029

RESUMEN

Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331K mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia/genética , Demencia/fisiopatología , Regulación de la Expresión Génica/genética , Mutación/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Conducta de Elección/fisiología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Condicionamiento Operante/fisiología , Demencia/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/genética
18.
Nat Neurosci ; 21(8): 1138, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29872124

RESUMEN

In the version of this article initially published, the footnote number 17 was missing from the author list for the two authors who contributed equally. Also, the authors have added a middle initial for author Justin R. Fallon and an acknowledgement to the Babraham Institute Imaging Facility and Sequencing Core Facility. The errors have been corrected in the HTML and PDF versions of the article.

19.
eNeuro ; 4(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28497110

RESUMEN

Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.


Asunto(s)
Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Motivación/fisiología , Recompensa , Animales , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Ingestión de Alimentos/fisiología , Interneuronas/efectos de los fármacos , Ratones Transgénicos , Núcleo Accumbens/fisiología
20.
Mol Brain ; 10(1): 31, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716096

RESUMEN

Reliable and reproducible assessment of animal learning and behavior is a central aim of basic and translational neuroscience research. Recent developments in automated operant chamber technology have led to the possibility of universal standard protocols, in addition to increased translational potential, reliability and accuracy. However, the impact of regional and national differences in the supplies of available reinforcers in this system on behavioural performance and inter-laboratory variability is an unknown and at present uncontrolled variable. Therefore, we aimed to identify which constituent(s) of the reward determines reinforcer strength to enable improved standardization of this parameter across laboratories. Male C57BL/6 mice were examined in the touchscreen-based fixed ratio (FR) and progressive ratio (PR) schedules, reinforced with different kinds of milk-based reinforcers to directly compare the incentive values of plain milk (PM, high-calorie: high-fat/low-sugar), strawberry-flavored milk (SM, high-calorie: low-fat/high-sugar), and semi-skimmed low-fat milk (LM, low-calorie: low-fat/low-sugar) on the basis of differences in caloric content, sugar/fat content, and flavor. Use of a higher caloric content reward was effective in increasing operant training acquisition rate. Total trial number completed in FR and breakpoint in PR were higher using the two isocaloric milk products (PM and SM) than the lower caloric LM, with comparable outcomes between PM and SM conditions, suggesting that total caloric content determines reward strength. Analysis of within-session changes in response rate revealed that overall outputs in FR and PR primarily depend on the response rate at the initial phase of a session, which itself was dependent on reinforcer caloric content. Interestingly, the rate of satiation, indicated by decay in response rate within a FR session, was highest when reinforced with SM, suggesting a rapid satiating effect of sugar. The key contribution of reward caloric content to operant performance was confirmed in a multi-laboratory study using the touchscreen 5-choice serial reaction time task (5-CSRTT) reinforced by two isocaloric milk-based liquid rewards with different countries of origin, which yielded consistent performance parameters across sites. Our results indicate that milk-based liquid reinforcer standardization can be facilitated by matching caloric content across laboratories despite regional or national differences in other non-caloric aspects of the reinforcers.


Asunto(s)
Condicionamiento Operante , Fenómenos Fisiológicos de la Nutrición , Refuerzo en Psicología , Recompensa , Animales , Conducta Animal , Conducta de Elección , Ingestión de Energía , Masculino , Ratones Endogámicos C57BL , Leche , Estándares de Referencia , Reproducibilidad de los Resultados , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA