Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cerebellum ; 23(1): 56-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36633829

RESUMEN

Cerebellar brain inhibition (CBI), a neural connection between the cerebellum and primary motor cortex (M1), has been researched as a target pathway for neuromodulation to improve clinical outcomes in various neurological diseases. However, conflicting results of anodal cerebellar transcranial direct current stimulation (acb-tDCS) on M1 excitability indicate that additional investigation is required to examine its precise effect. This study aimed to gather evidence of the neuromodulatory effect of acb-tDCS on the M1 using functional near-infrared spectroscopy (fNIRS). Sixteen healthy participants were included in this cross-over study. Participants received real and sham acb-tDCS randomly, with a minimum 1-week washout period between them. The anode and cathode were placed on the right cerebellum and the right buccinator muscle, respectively. Stimulation lasted 20 min at an intensity of 2 mA, and fNIRS data were recorded for 42 min (including a 4-min baseline before stimulation and an 18-min post-stimulation duration) using eight channels attached bilaterally on the M1. acb-tDCS induced a significant decrease in oxyhemoglobin (HbO) concentration (inhibitory effect) in the left (contralateral) M1, whereas it induced a significant increase in HbO concentration (excitatory effect) in the right (ipsilateral) M1 compared to sham tDCS during (p < 0.05) and after stimulation (p < 0.01) in a group level analysis. At the individual level, variations in response to acb-tDCS were observed. Our findings demonstrate the neuromodulatory effects of acb-tDCS on the bilateral M1 in terms of neuronal hemodynamics.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Espectroscopía Infrarroja Corta , Corteza Motora/fisiología , Estudios Cruzados , Cerebelo/fisiología , Electrodos , Potenciales Evocados Motores/fisiología
2.
J Clin Neurol ; 19(2): 115-124, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854332

RESUMEN

The sustained growth of digital healthcare in the field of neurology relies on portable and cost-effective brain monitoring tools that can accurately monitor brain function in real time. Functional near-infrared spectroscopy (fNIRS) is one such tool that has become popular among researchers and clinicians as a practical alternative to functional magnetic resonance imaging, and as a complementary tool to modalities such as electroencephalography. This review covers the contribution of fNIRS to the personalized goals of digital healthcare in neurology by identifying two major trends that drive current fNIRS research. The first major trend is multimodal monitoring using fNIRS, which allows clinicians to access more data that will help them to understand the interconnection between the cerebral hemodynamics and other physiological phenomena in patients. This allows clinicians to make an overall assessment of physical health to obtain a more-detailed and individualized diagnosis. The second major trend is that fNIRS research is being conducted with naturalistic experimental paradigms that involve multisensory stimulation in familiar settings. Cerebral monitoring of multisensory stimulation during dynamic activities or within virtual reality helps to understand the complex brain activities that occur in everyday life. Finally, the scope of future fNIRS studies is discussed to facilitate more-accurate assessments of brain activation and the wider clinical acceptance of fNIRS as a medical device for digital healthcare.

3.
J Clin Neurol ; 19(4): 428, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37417443

RESUMEN

This corrects the article on p. 115 in vol. 19, PMID: 36854332.

4.
Neurophotonics ; 8(2): 025013, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34179215

RESUMEN

Significance: We propose a customized animal-specific head cap and an near-infrared spectroscopy (NIRS) system to obtain NIRS signals in mobile small animals. NIRS studies in mobile small animals provide a feasible solution for comprehensive brain function studies. Aim: We aim to develop and validate a multichannel NIRS system capable of performing functional brain imaging along with a closed-box stimulation kit for small animals in mobile conditions. Approach: The customized NIRS system uses light-weight long optical fibers, along with a customized light-weight head cap to securely attach the optical fibers to the mouse. A customized stimulation box was designed to perform various stimuli in a controlled environment. The system performance was tested in a visual stimulation task on eight anesthetized mice and eight freely moving mice. Results: Following the visual stimulation task, we observed a significant stimulation-related oxyhemoglobin (HbO) increase in the visual cortex of freely moving mice during the task. In contrast, HbO concentration did not change significantly in the visual cortex of anesthetized mice. Conclusions: We demonstrate the feasibility of a wearable, multichannel NIRS system for small animals in a less confined experimental design.

5.
Biomed Opt Express ; 10(4): 1736-1749, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086700

RESUMEN

We developed a single-camera two-channel hemodynamic imaging system that uses near-infrared light to monitor the mouse brain in vivo with an exposed, un-thinned, and intact skull to explore the effect of Parkinson's disease on the resting state functional connectivity of the brain. To demonstrate our system's ability to monitor cerebral hemodynamics, we first performed direct electrical stimulation of an anesthetized healthy mouse brain and detected hemodynamic changes localized to the stimulated area. Subsequently, we developed a unilaterally lesioned 6-hydroxydopamine (hemi-parkinsonian) mouse model and detected the differences in functional connectivity between the normal and hemi-parkinsonian mouse brains by comparing the hemispheric hemodynamic correlations during the resting state. Seed-based correlation for the oxy-hemoglobin channel from the left and right hemispheres of healthy mice was much higher and more symmetric than in hemi-parkinsonian mice. Through a k-means clustering of the hemodynamic signals, the healthy mouse brains were segmented according to brain region, but the hemi-parkinsonian mice did not show a similar segmentation. Overall, this study highlights the development of a spatial multiplexing hemodynamic imaging system that reveals the resting state hemodynamic connectivity in healthy and hemi-parkinsonian mice.

6.
Neurophotonics ; 5(1): 015002, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29392157

RESUMEN

The Valsalva maneuver (VM) with beat-to-beat blood pressure and heart rate monitoring are used to evaluate orthostatic intolerance (OI). However, they lack the ability to detect cerebral hemodynamic changes, which may be a cause of OI symptoms. Therefore, we utilized near-infrared spectroscopy during VM. Patients with OI symptoms and normal healthy subjects were recruited. Patients were subgrouped according to VM results: patients with normal VM (NVM) and abnormal VM (AbVM). Oxyhemoglobin (HbO), deoxyhemoglobin, and total hemoglobin changes were measured at four different source-detector distances (SD) (15, 30, 36, and 45 mm), and latency, amplitude, duration, and integrated total signal were calculated. Those parameters were compared between a normal healthy control (HC) group and the two OI patient subgroups. We found that HbO increment latency at 30-mm SD in the HC, NVM, and AbVM groups was as follows: [Formula: see text], [Formula: see text], and [Formula: see text], respectively ([Formula: see text]). Among the four parameters we evaluated, latency of HbO increment was the best marker for differentiating OI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA