Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 36(8): e4932, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940044

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Liver biopsy remains the gold standard for diagnosis and staging of disease. There is a clinical need for noninvasive diagnostic tools for risk stratification, follow-up, and monitoring treatment response that are currently lacking, as well as preclinical models that recapitulate the etiology of the human condition. We have characterized the progression of NAFLD in eNOS-/- mice fed a high fat diet (HFD) using noninvasive Dixon-based magnetic resonance imaging and single voxel STEAM spectroscopy-based protocols to measure liver fat fraction at 3 T. After 8 weeks of diet intervention, eNOS-/- mice exhibited significant accumulation of intra-abdominal and liver fat compared with control mice. Liver fat fraction measured by 1 H-MRS in vivo showed a good correlation with the NAFLD activity score measured by histology. Treatment of HFD-fed NOS3-/- mice with metformin showed significantly reduced liver fat fraction and altered hepatic lipidomic profile compared with untreated mice. Our results show the potential of in vivo liver MRI and 1 H-MRS to noninvasively diagnose and stage the progression of NAFLD and to monitor treatment response in an eNOS-/- murine model that represents the classic NAFLD phenotype associated with metabolic syndrome.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Modelos Animales de Enfermedad , Hígado/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones Endogámicos C57BL
2.
Arterioscler Thromb Vasc Biol ; 40(9): 2159-2170, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32673527

RESUMEN

OBJECTIVE: Evidence from preclinical and clinical studies has demonstrated that myocardial infarction promotes atherosclerosis progression. The impact of focal vascular inflammation on the progression and phenotype of remote atherosclerosis remains unknown. Approach and Results: We used a novel ApoE-/- knockout mouse model of sustained arterial inflammation, initiated by mechanical injury in the abdominal aorta. Using serial in vivo molecular MRI and ex vivo histology and flow cytometry, we demonstrate that focal arterial inflammation triggered by aortic injury, accelerates atherosclerosis in the remote brachiocephalic artery. The brachiocephalic artery atheroma had distinct histological features including increased plaque size, plaque permeability, necrotic core to collagen ratio, infiltration of more inflammatory monocyte subsets, and reduced collagen content. We also found that arterial inflammation following focal vascular injury evoked a prolonged systemic inflammatory response manifested as a persistent increase in serum IL-6 (interleukin 6). Finally, we demonstrate that 2 therapeutic interventions-pravastatin and minocycline-had distinct anti-inflammatory effects at the plaque and systemic level. CONCLUSIONS: We show for the first time that focal arterial inflammation in response to vascular injury enhances systemic vascular inflammation, accelerates remote atheroma progression and induces plaques more inflamed, lipid-rich, and collagen-poor in the absence of ischemic myocardial injury. This inflammatory cascade is modulated by pravastatin and minocycline treatments, which have anti-inflammatory effects at both plaque and systemic levels that mitigate atheroma progression.


Asunto(s)
Aortitis/complicaciones , Aterosclerosis/etiología , Tronco Braquiocefálico/metabolismo , Mediadores de Inflamación/sangre , Placa Aterosclerótica , Animales , Antiinflamatorios/farmacología , Aortitis/sangre , Aortitis/patología , Aterosclerosis/sangre , Aterosclerosis/patología , Aterosclerosis/prevención & control , Tronco Braquiocefálico/efectos de los fármacos , Tronco Braquiocefálico/patología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Interleucina-6/sangre , Metabolismo de los Lípidos , Masculino , Ratones Noqueados para ApoE , Minociclina/farmacología , Necrosis , Pravastatina/farmacología , Factores de Tiempo
3.
Ann Hepatol ; 25: 100358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33962045

RESUMEN

INTRODUCTION AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver abnormalities including steatosis, steatohepatitis, fibrosis, and cirrhosis. Liver biopsy remains the gold standard method to determine the disease stage in NAFLD but is an invasive and risky procedure. Studies have previously reported that changes in intrahepatic fatty acids (FA) composition are related to the progression of NAFLD, mainly in its early stages. The aim of this study was to characterize the liver FA composition in mice fed a Choline-deficient L-amino-defined (CDAA) diet at different stages of NAFLD using magnetic resonance spectroscopy (MRS). METHODS: We used in-vivo MRS to perform a longitudinal characterization of hepatic FA changes in NAFLD mice for 10 weeks. We validated our findings with ex-vivo MRS, gas chromatography-mass spectrometry and histology. RESULTS: In-vivo and ex-vivo results showed that livers from CDAA-fed mice exhibit a significant increase in liver FA content as well as a change in FA composition compared with control mice. After 4 weeks of CDAA diet, a decrease in polyunsaturated and an increase in monounsaturated FA were observed. These changes were associated with the appearance of early stages of steatohepatitis, confirmed by histology (NAFLD Activity Score (NAS) = 4.5). After 10 weeks of CDAA-diet, the liver FA composition remained stable while the NAS increased further to 6 showing a combination of early and late stages of steatohepatitis. CONCLUSION: Our results suggest that monitoring lipid composition in addition to total water/fat with MRS may yield additional insights that can be translated for non-invasive stratification of high-risk NAFLD patients.


Asunto(s)
Ácidos Grasos/metabolismo , Espectroscopía de Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
4.
MAGMA ; 33(5): 627-640, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32078075

RESUMEN

OBJECTIVE: To develop a three-dimensional (3D) high-resolution free-breathing magnetization transfer ratio (MTR) sequence for contrast-free assessment of myocardial infarct and coronary vein anatomy. MATERIALS AND METHODS: Two datasets with and without off-resonance magnetization transfer preparation were sequentially acquired to compute MTR. 2D image navigators enabled beat-to-beat translational and bin-to-bin non-rigid motion correction. Two different imaging sequences were explored. MTR scar localization was compared against 3D late gadolinium enhancement (LGE) in a porcine model of myocardial infarction. MTR variability across the left ventricle and vessel sharpness in the coronary veins were evaluated in healthy human subjects. RESULTS: A decrease in MTR was observed in areas with LGE in all pigs (non-infarct: 25.1 ± 1.7% vs infarct: 16.8 ± 1.9%). The average infarct volume overlap on MTR and LGE was 62.5 ± 19.2%. In humans, mean MTR in myocardium was between 37 and 40%. Spatial variability was between 15 and 20% of the mean value. 3D whole heart MT-prepared datasets enabled coronary vein visualization with up to 8% improved vessel sharpness for non-rigid compared to translational motion correction. DISCUSSION: MTR and LGE showed agreement in infarct detection and localization in a swine model. Free-breathing 3D MTR maps are feasible in humans but high spatial variability was observed. Further clinical studies are warranted.


Asunto(s)
Cicatriz , Gadolinio , Animales , Medios de Contraste , Imagenología Tridimensional , Imagen por Resonancia Magnética , Miocardio/patología , Reproducibilidad de los Resultados , Porcinos
6.
Eur Heart J ; 39(24): 2282-2288, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29590330

RESUMEN

Aims: Vascular ageing is characterized by arterial stiffening, dilation, and arterial wall thickening. We investigated the extent to which these changes are related and their heritability during 5 year follow-up in the Twins UK cohort. Methods and results: Carotid-femoral pulse wave velocity (PWVcf), carotid diameter, carotid distensibility, and carotid intima-media thickness (IMT) were measured in 762 female twins (mean age 57.9 ± 8.6 years) at two time-points over an average follow-up of 4.9 ± 1.5 years. Magnetic resonance imaging (MRI) was performed in a sub-sample of 38 women to measure aortic pulse wave velocity (PWVaorta), diameter, and wall thickness. Heritability of changes in arterial wall properties was estimated using structural equation modelling. Annual increases in PWVcf, carotid diameter, distensibility, and IMT were 0.139 m/s, 0.028 mm, -0.4 kPa-1, and 0.011 mm per year, respectively. In regression analysis, predictors of progression in PWVcf included age, mean arterial pressure (MAP), and heart rate (HR) at baseline, and progression in MAP, HR, and body mass index (BMI). Predictors of progression in IMT included progression in MAP, BMI, and triglyceride levels. Progression of PWV and distensibility correlated with progression in carotid diameter but not with IMT. Heritability of progression of PWVcf, diameter, and IMT was 55%, 21%, and 8%, respectively. In a sub-sample of women that underwent MRI, aortic wall thickness increased by 0.19 mm/year, but aortic wall thickening was not correlated with an increase in lumen diameter or PWVaorta. Conclusion: Arterial stiffening, as measured by PWVcf, and dilation are heritable but independent of arterial wall thickening. Genetic and cardiovascular risk factors contribute differently to progression of PWV and IMT.


Asunto(s)
Envejecimiento , Arterias Carótidas/diagnóstico por imagen , Gemelos/genética , Rigidez Vascular/genética , Anciano , Aorta , Arterias Carótidas/patología , Grosor Intima-Media Carotídeo , Femenino , Arteria Femoral , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Persona de Mediana Edad , Tamaño de los Órganos , Análisis de la Onda del Pulso , Ultrasonografía , Reino Unido
7.
Magn Reson Med ; 79(3): 1460-1472, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28722267

RESUMEN

PURPOSE: To develop a 3D whole-heart Bright-blood and black-blOOd phase SensiTive (BOOST) inversion recovery sequence for simultaneous noncontrast enhanced coronary lumen and thrombus/hemorrhage visualization. METHODS: The proposed sequence alternates the acquisition of two bright-blood datasets preceded by different preparatory pulses to obtain variations in blood/myocardium contrast, which then are combined in a phase-sensitive inversion recovery (PSIR)-like reconstruction to obtain a third, coregistered, black-blood dataset. The bright-blood datasets are used for both visualization of the coronary lumen and motion estimation, whereas the complementary black-blood dataset potentially allows for thrombus/hemorrhage visualization. Furthermore, integration with 2D image-based navigation enables 100% scan efficiency and predictable scan times. The proposed sequence was compared to conventional coronary MR angiography (CMRA) and PSIR sequences in a standardized phantom and in healthy subjects. Feasibility for thrombus depiction was tested ex vivo. RESULTS: With BOOST, the coronary lumen is visualized with significantly higher (P < 0.05) contrast-to-noise ratio and vessel sharpness when compared to conventional CMRA. Furthermore, BOOST showed effective blood signal suppression as well as feasibility for thrombus visualization ex vivo. CONCLUSION: A new PSIR sequence for noncontrast enhanced simultaneous coronary lumen and thrombus/hemorrhage detection was developed. The sequence provided improved coronary lumen depiction and showed potential for thrombus visualization. Magn Reson Med 79:1460-1472, 2018. © 2017 International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Angiografía Coronaria/métodos , Trombosis Coronaria/diagnóstico por imagen , Corazón/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Adulto , Algoritmos , Animales , Femenino , Humanos , Masculino , Fantasmas de Imagen , Porcinos
8.
Circ Res ; 115(10): 857-66, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25201911

RESUMEN

RATIONALE: Abdominal aortic aneurysms constitute a degenerative process in the aortic wall. Both the miR-29 and miR-15 families have been implicated in regulating the vascular extracellular matrix. OBJECTIVE: Our aim was to assess the effect of the miR-15 family on aortic aneurysm development. METHODS AND RESULTS: Among the miR-15 family members, miR-195 was differentially expressed in aortas of apolipoprotein E-deficient mice on angiotensin II infusion. Proteomics analysis of the secretome of murine aortic smooth muscle cells, after miR-195 manipulation, revealed that miR-195 targets a cadre of extracellular matrix proteins, including collagens, proteoglycans, elastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, particularly in regulating collagens. Systemic and local administration of cholesterol-conjugated antagomiRs revealed better inhibition of miR-195 compared with miR-29b in the uninjured aorta. However, in apolipoprotein E-deficient mice receiving angiotensin II, silencing of miR-29b, but not miR-195, led to an attenuation of aortic dilation. Higher aortic elastin expression was accompanied by an increase of matrix metalloproteinases 2 and 9 in mice treated with antagomiR-195. In human plasma, an inverse correlation of miR-195 was observed with the presence of abdominal aortic aneurysms and aortic diameter. CONCLUSIONS: We provide the first evidence that miR-195 may contribute to the pathogenesis of aortic aneurysmal disease. Although inhibition of miR-29b proved more effective in preventing aneurysm formation in a preclinical model, miR-195 represents a potent regulator of the aortic extracellular matrix. Notably, plasma levels of miR-195 were reduced in patients with abdominal aortic aneurysms suggesting that microRNAs might serve as a noninvasive biomarker of abdominal aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal/sangre , MicroARNs/fisiología , Anciano , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Biomarcadores/sangre , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/sangre , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología
9.
Proc Natl Acad Sci U S A ; 110(24): 9909-13, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716652

RESUMEN

Sepsis is a common life-threatening clinical syndrome involving complications as a result of severe infection. A cardinal feature of sepsis is inflammation that results in oxidative stress. Sepsis in wild-type mice induced oxidative activation of cGMP-dependent protein kinase 1 alpha (PKG Iα), which increased blood vessel dilation and permeability, and also lowered cardiac output. These responses are typical features of sepsis and their combined effect is a lowering of blood pressure. This hypotension, a hallmark of sepsis, resulted in underperfusion of end organs, resulting in their damage. A central role for PKG Iα oxidative activation in injury is supported by oxidation-resistant Cys42Ser PKG Iα knock-in mice being markedly protected from these clinical indices of injury during sepsis. We conclude that oxidative activation of PKG Iα is a key mediator of hypotension and consequential organ injury during sepsis.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Hipotensión/fisiopatología , Insuficiencia Multiorgánica/fisiopatología , Sepsis/fisiopatología , Sustitución de Aminoácidos , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Activación Enzimática/genética , Hipotensión/enzimología , Hipotensión/genética , Immunoblotting , L-Lactato Deshidrogenasa/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Insuficiencia Multiorgánica/enzimología , Insuficiencia Multiorgánica/genética , Oxidación-Reducción , Sepsis/enzimología , Sepsis/genética
10.
Arterioscler Thromb Vasc Biol ; 34(6): 1193-1198, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24723557

RESUMEN

OBJECTIVE: Deep venous thrombosis is a major health problem. Thrombolytic therapies are effective in recanalizing the veins and preventing post-thrombotic complications, but there is no consensus on selection criteria. The aim of this study was to investigate a fibrin-specific MRI contrast agent (EP-2104R) for the accurate quantification of thrombus' fibrin content in vivo and for the identification of thrombus suitable for thrombolysis. APPROACH AND RESULTS: Venous thrombosis was induced in the inferior vena cava of 8- to 10-week-old male BALB/C mice and MRI performed 2, 4, 7, 10, 14, and 21 days later. Eighteen mice were scanned at each time point pre and 2 hours post injection of EP-2104R (8.0 µmol/kg) with 12 mice at each time point used to correlate fibrin contrast uptake with thrombus' histological stage and fibrin content. Six mice at each time point were immediately subjected to intravascular thrombolytic therapy (10 mg/kg of tissue-type plasminogen activator). Mice were imaged to assess response to lytic therapy 24 hours after thrombolytic treatment. Two mice at each time point were scanned post injection of 0.2 mmol/kg of Gd-DTPA (gadolinium with diethylenetriaminepentacetate, Magnevist, Schering AG, Berlin, Germany) for control purpose. Contrast uptake was correlated positively with the fibrin content of the thrombus measured by Western blotting (R(2)=0.889; P<0.001). Thrombus relaxation rate (R1) post contrast and the change in visualized thrombus size on late gadolinium enhancement inversion recovery MRI pre-EP-2104R and post-EP-2104R injection were the best predictors for successful thrombolysis (area under the curve, 0.989 [95% confidence interval, 0.97-1.00] and 0.994 [95% confidence interval, 0.98-1.00] respectively). CONCLUSIONS: MRI with a fibrin-specific contrast agent accurately estimates thrombus fibrin content in vivo and identifies thrombi that are amenable for thrombolysis.


Asunto(s)
Fibrina/análisis , Imagen por Resonancia Magnética/métodos , Terapia Trombolítica , Trombosis de la Vena/diagnóstico , Animales , Gadolinio , Masculino , Ratones , Ratones Endogámicos BALB C , Péptidos , Trombosis de la Vena/tratamiento farmacológico , Trombosis de la Vena/metabolismo
11.
Circulation ; 128(7): 729-736, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23820077

RESUMEN

BACKGROUND: The magnetic resonance longitudinal relaxation time (T1) changes with thrombus age in humans. In this study, we investigate the possible mechanisms that give rise to the T1 signal in venous thrombi and whether changes in T1 relaxation time are informative of the susceptibility to lysis. METHODS AND RESULTS: Venous thrombosis was induced in the vena cava of BALB/C mice, and temporal changes in T1 relaxation time correlated with thrombus composition. The mean T1 relaxation time of thrombus was shortest at 7 days following thrombus induction and returned to that of blood as the thrombus resolved. T1 relaxation time was related to thrombus methemoglobin formation and further processing. Studies in inducible nitric oxide synthase (iNOS(-/-))-deficient mice revealed that inducible nitric oxide synthase mediates oxidation of erythrocyte lysis-derived iron to paramagnetic Fe3+, which causes thrombus T1 relaxation time shortening. Studies using chemokine receptor-2-deficient mice (Ccr2(-/-)) revealed that the return of the T1 signal to that of blood is regulated by removal of Fe3+ by macrophages that accumulate in the thrombus during its resolution. Quantification of T1 relaxation time was a good predictor of successful thrombolysis with a cutoff point of <747 ms having a sensitivity and specificity to predict successful lysis of 83% and 94%, respectively. CONCLUSIONS: The source of the T1 signal in the thrombus results from the oxidation of iron (released from the lysis of trapped erythrocytes in the thrombus) to its paramagnetic Fe3+ form. Quantification of T1 relaxation time appears to be a good predictor of the success of thrombolysis.


Asunto(s)
Fibrinólisis/fisiología , Hierro/metabolismo , Imagen por Resonancia Magnética , Trombosis de la Vena/patología , Animales , Endotelio Vascular/lesiones , Eritrocitos/química , Humanos , Ligadura , Macrófagos/fisiología , Masculino , Espectrometría de Masas , Metahemoglobina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/fisiología , Oxidación-Reducción , Receptores CCR2/deficiencia , Receptores CCR2/fisiología , Factores de Tiempo , Vena Cava Inferior/patología , Trombosis de la Vena/etiología , Trombosis de la Vena/metabolismo
12.
Radiology ; 271(2): 390-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24475852

RESUMEN

PURPOSE: To compare delayed-enhancement (DE) magnetic resonance (MR) imaging with an elastin-specific contrast agent and unenhanced black-blood (BB) MR imaging with regard to vessel wall delineation and assessment of vascular remodeling and to test the prospective value for predicting plaque disruption in a rabbit model of atherosclerosis. MATERIALS AND METHODS: All procedures were approved by the animal ethics committee. Atherosclerosis was induced in 14 New Zealand White rabbits by means of a 1% cholesterol diet and endothelial denudation. Plaque disruption was triggered with Russell's viper venom and histamine. Animals with atherosclerosis were imaged before triggering to identify plaques and vascular remodeling and after triggering to identify thrombus. Plaques were classified as nondisrupted (stable) or disrupted (vulnerable). Control rabbits fed a regular diet were imaged twice. Unenhanced T1-weighted BB MR imaging, DE MR imaging with an elastin-specific contrast agent, and T1 mapping were used to assess vascular remodeling and calculate the plaque area and vessel wall relaxation rate (R1 = 1/T1). Elastin was quantified by using elastica-van Gieson stain. Group comparisons were analyzed with the Mann-Whitney or paired t test. Agreement between methods was performed with Bland-Altman analysis. RESULTS: Unenhanced T1-weighted BB MR imaging and DE MR imaging showed that, compared with nondisrupted plaques, disrupted plaques had larger plaque area (T1-weighted BB MR imaging: 5.1 mm(2) vs 5.7 mm(2); DE MR imaging: 6.0 mm(2) vs 7.9 mm(2); P < .001) and vessel area (T1-weighted BB MR imaging: 11.8 mm(2) vs 14.3 mm(2); DE MR imaging: 10.8 mm(2) vs 13.9 mm(2); P < .001) and underwent positive remodeling. Assessment of positive remodeling with DE MR imaging enabled better prediction of plaque disruption compared to that with unenhanced T1-weighted BB imaging (sensitivity: 83.7% vs 58.1%). DE MR imaging showed a stronger agreement with histologic findings, whereas the vessel area was overestimated with unenhanced T1-weighted BB imaging. CONCLUSION: Compared with unenhanced T1-weighted BB MR imaging, DE MR imaging with an elastin-specific contrast agent enables more accurate assessment of vascular remodeling in the prediction of vulnerable plaque.


Asunto(s)
Aorta Abdominal/patología , Medios de Contraste/farmacología , Angiografía por Resonancia Magnética/métodos , Placa Aterosclerótica/patología , Animales , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Elastina , Procesamiento de Imagen Asistido por Computador , Estudios Prospectivos , Conejos
13.
Basic Res Cardiol ; 109(1): 397, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24322905

RESUMEN

Myocardial infarction (MI), and subsequent heart failure, remains a major healthcare problem in the western and developing world and leads to substantial morbidity and mortality. After MI, the ability of the myocardium to recover is closely associated with a complex immune response that often leads to adverse remodeling of the ventricle, and poor prognosis. Currently used clinical imaging modalities allow the assessment of anatomy, perfusion, function, and viability but do not provide insights into specific biological processes. In contrast, novel non-invasive imaging methods, using targeted imaging agents, allow imaging of the molecular processes underlying the post-MI immune cell response, and subsequent remodeling. Therefore, this may have significant diagnostic, prognostic, and therapeutic value, and may help to improve our understanding of post-infarct remodeling, in vivo. Imaging modalities such as magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography have been used in concert with radiolabelled and (super) paramagnetic probes to image each phase of the immune response. These probes, which target apoptosis, necrosis, neutrophils, monocytes, enzymes, angiogenesis, extracellular matrix, and scar formation have been assessed and validated pre-clinically. Translating this work to the bedside in a cost-effective, clinically beneficial manner remains a significant challenge. This article reviews these new imaging techniques as well as the corresponding pathophysiology.


Asunto(s)
Imagen Molecular/métodos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Animales , Humanos
14.
J Magn Reson Imaging ; 39(3): 598-608, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24006053

RESUMEN

PURPOSE: To investigate a very small iron-oxide particle (VSOP) in a mouse model of acute ischemia-reperfusion to access the mechanism of such particles in areas of myocardial inflammation. MATERIALS AND METHODS: Animals were injected with VSOP at several time points, in a mouse model of acute myocardial infarction (MI), before and after MI. MRI was used to localize areas of VSOP enhancement, evaluate VSOP areas extension, and determine the related T2* values. Histology, electron microscopy, macrophage counting, and Evan's Blue staining were also performed. RESULTS: We found that areas of VSOP uptake decreased from 1 to 8 days post-MI while the related T2* values increased. T2* and VSOP areas, defined from MRI data, correlated well between 1 and 3 days post-MI but not at 7 days after injection. Histological analysis and electron microscopy showed colocalization of macrophages with areas of VSOP staining. However, there was no correlation between number of macrophages and the extension of the VSOP areas achieved by MR. We found that only areas of increased permeability (assessed by Evan's Blue staining) showed colocalization of macrophages and VSOP uptake. CONCLUSION: This study demonstrates that VSOP allows the assessment of myocardial inflammation associated with increased permeability during infarct healing in a mouse model of ischemia-reperfusion.


Asunto(s)
Compuestos Férricos/farmacología , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico , Reperfusión Miocárdica/métodos , Animales , Medios de Contraste , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Inyecciones Intravenosas , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Infarto del Miocardio/cirugía , Distribución Aleatoria , Valores de Referencia , Sensibilidad y Especificidad
15.
J Cardiovasc Magn Reson ; 16: 37, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24884541

RESUMEN

BACKGROUND: Although increased volume of pericardial fat has been associated with decreased cardiac function, it is unclear whether this association is mediated by systemic overall obesity or direct regional fat interactions. We hypothesized that if local effects dominate, left ventricular (LV) function would be most strongly associated with pericardial fat that surrounds the left rather than the right ventricle (RV). METHODS: Female obese subjects (n = 60) had cardiovascular magnetic resonance (CMR) scans to obtain measures of LV function and pericardial fat volumes. LV function was obtained using the cine steady state free precession imaging in short axis orientation. The amount of pericardial fat was determined volumetrically by the cardiac gated T1 black blood imaging and normalized to body surface area. RESULTS: In this study cohort, LV fat correlated with several LV hemodynamic measurements including cardiac output (r = -0.41, p = 0.001) and stroke volume (r = -0.26, p = 0.05), as well as diastolic functional parameters including peak-early-filling rate (r = -0.38, p = 0.01), early late filling ratio (r = -0.34, p = 0.03), and time to peak-early-filling (r = 0.34, p = 0.03). These correlations remained significant even after adjusting for the body mass index and the blood pressure. However, similar correlations became weakened or even disappeared between RV fat and LV function. LV function was not correlated with systemic plasma factors, such as C-reactive protein (CRP), B-type natriuretic peptide (BNP), Interleukin-6 (IL-6), resistin and adiponectin (all p > 0.05). CONCLUSIONS: LV hemodynamic and diastolic function was associated more with LV fat as compared to RV or total pericardial fat, but not with systemic inflammatory markers or adipokines. The correlations between LV function and pericardial fat remained significant even after adjusting for systemic factors. These findings suggest a site-specific influence of pericardial fat on LV function, which could imply local secretion of molecules into the underlying tissue or an anatomic effect, both mechanisms meriting future evaluation.


Asunto(s)
Tejido Adiposo/fisiopatología , Adiposidad , Obesidad/complicaciones , Pericardio/fisiopatología , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Adipoquinas/sangre , Tejido Adiposo/patología , Adulto , Biomarcadores/sangre , Índice de Masa Corporal , Femenino , Hemodinámica , Humanos , Mediadores de Inflamación/sangre , Imagen por Resonancia Cinemagnética , Persona de Mediana Edad , Obesidad/sangre , Obesidad/diagnóstico , Obesidad/fisiopatología , Pericardio/patología , Factores de Riesgo , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Derecha , Adulto Joven
16.
Eur Heart J Imaging Methods Pract ; 2(1): qyae004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38370393

RESUMEN

Aims: Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma. Methods and results: Plaque MPO activity was assessed in vivo in rabbits (n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens (n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS. Conclusion: We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.

17.
Circulation ; 126(6): 707-19, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22753191

RESUMEN

BACKGROUND: Endothelial dysfunction promotes atherosclerosis and precedes acute cardiovascular events. We investigated whether in vivo magnetic resonance imaging with the use of an albumin-binding contrast agent, gadofosveset, could detect endothelial damage associated with atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. Furthermore, we tested whether magnetic resonance imaging could noninvasively assess endothelial function by measuring the endothelial-dependent vasodilation in response to acetylcholine. METHODS AND RESULTS: ApoE(-/-) mice were imaged at 4, 8, and 12 weeks after commencement of a high-fat diet. Statin-treated ApoE(-/-) mice were scanned after 12 weeks of a high-fat diet. Wild-type mice were imaged before and 48 hours after injection of Russell's viper venom, an endothelial toxin. Delayed enhancement magnetic resonance imaging and T1 mapping of the brachiocephalic artery, 30 minutes after injection of gadofosveset, showed increased vessel wall enhancement and relaxation rate (R(1)) with progression of atherosclerosis in ApoE(-/-)(R(1) [s(-1)]: R(4 weeks) 2.42±0.35, R(8 weeks) 3.45±0.54, R(12 weeks) 3.83±0.52) and Russell's viper venom-injected wild-type mice (R(1)=4.57±0.86). Conversely, wild-type (R(1)=2.15±0.34) and statin-treated ApoE(-/-) (R(1)=3.0±0.65) mice showed less enhancement. Uptake of gadofosveset correlated with Evans blue staining, morphological changes of endothelial cells, and widening of the cell-cell junctions, suggesting that uptake occurs in regions of increased vascular permeability. Endothelial-dependent vasomotor responses showed vasoconstriction of the arteries of the ApoE(-/-) (-22.22±7.95%) and Russell's viper venom-injected (-10.37±17.60%) mice compared with wild-type mice (32.45±12.35%). Statin treatment improved endothelium morphology and function (-8.12±8.22%). CONCLUSIONS: We demonstrate the noninvasive assessment of endothelial permeability and function with the use of an albumin-binding magnetic resonance contrast agent. Blood albumin leakage could be a surrogate marker for the in vivo evaluation of interventions that aim to restore the endothelium.


Asunto(s)
Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Permeabilidad Capilar/fisiología , Medios de Contraste/metabolismo , Endotelio Vascular/metabolismo , Imagen por Resonancia Magnética/métodos , Albúmina Sérica/metabolismo , Animales , Evaluación Preclínica de Medicamentos/métodos , Endotelio Vascular/patología , Gadolinio/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Compuestos Organometálicos/metabolismo , Unión Proteica/fisiología
18.
Magn Reson Med ; 69(1): 150-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22392553

RESUMEN

Current techniques to visualize the arterial vessel wall are limited in coverage because most of them are flow dependent. In this study, we present a novel technique for flow-independent vessel wall imaging that takes advantage of the differences in T2 relaxation time of arterial blood and surrounding tissues using the T2-preparation prepulse. The technique is based on the acquisition and subtraction of two data sets, one obtained with and one without T2-preparation prepulse. This approach allows for nulling the signal of arterial blood while maintaining signal from muscle and vessel wall. The result of the subtraction is a flow-independent black-blood vessel wall image. To minimize the motion sensitivity of the subtraction step, we developed an interleaved acquisition for the T2-preparation prepulse and non-T2-preparation prepulse images, which allows obtaining coronary vessel wall images from a whole-heart acquisition with minimal misregistration artefacts. In this article, we present the technique and preliminary results in healthy subjects.


Asunto(s)
Aorta Torácica/anatomía & histología , Vasos Coronarios/anatomía & histología , Angiografía por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Molecules ; 18(11): 14042-69, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24232739

RESUMEN

Despite advances in prevention, risk assessment and treatment, coronary artery disease (CAD) remains the leading cause of morbidity and mortality in Western countries. The lion's share is due to acute coronary syndromes (ACS), which are predominantly triggered by plaque rupture or erosion and subsequent coronary thrombosis. As the majority of vulnerable plaques does not cause a significant stenosis, due to expansive remodeling, and are rather defined by their composition and biological activity, detection of vulnerable plaques with x-ray angiography has shown little success. Non-invasive vulnerable plaque detection by identifying biological features that have been associated with plaque progression, destabilization and rupture may therefore be more appropriate and may allow earlier detection, more aggressive treatment and monitoring of treatment response. MR molecular imaging with target specific molecular probes has shown great promise for the noninvasive in vivo visualization of biological processes at the molecular and cellular level in animals and humans. Compared to other imaging modalities; MRI can provide excellent spatial resolution; high soft tissue contrast and has the ability to simultaneously image anatomy; function as well as biological tissue composition and activity.


Asunto(s)
Aterosclerosis/patología , Imagen por Resonancia Magnética/métodos , Animales , Medios de Contraste , Enfermedad de la Arteria Coronaria/patología , Humanos
20.
J Vis Exp ; (193)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036233

RESUMEN

Fibrosis occurs in various tissues as a reparative response to injury or damage. If excessive, however, fibrosis can lead to tissue scarring and organ failure, which is associated with high morbidity and mortality. Collagen is a key driver of fibrosis, with type I and type III collagen being the primary types involved in many fibrotic diseases. Unlike conventional protocols used to immobilize other proteins (e.g., elastin, albumin, fibronectin, etc.), comprehensive protocols to reproducibly immobilize different types of collagens in order to produce stable coatings are not readily available. Immobilizing collagen is surprisingly challenging because multiple experimental conditions may affect the efficiency of immobilization, including the type of collagen, the pH, the temperature, and the type of microplate used. Here, a detailed protocol to reproducibly immobilize and quantify type I and III collagens resulting in stable and reproducible gels/films is provided. Furthermore, this work demonstrates how to perform, analyze, and interpret in vitro time-resolved fluorescence binding studies to investigate the interactions between collagens and candidate collagen-binding compounds (e.g., a peptide conjugated to a metal chelate carrying, for example, europium [Eu(III)]). Such an approach can be universally applied to various biomedical applications, including the field of molecular imaging to develop targeted imaging probes, drug development, cell toxicity studies, cell proliferation studies, and immunoassays.


Asunto(s)
Colágeno , Transducción de Señal , Humanos , Colágeno/metabolismo , Fibrosis , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA