Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Genet Sel Evol ; 56(1): 42, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844868

RESUMEN

BACKGROUND: Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS: Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS: Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Fertilidad/genética , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico , Frecuencia de los Genes
2.
J Cell Physiol ; 232(8): 2075-2082, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27608413

RESUMEN

To examine tight junction protein abundance and apoptosis of epithelial cells at the onset of involution in rodent mammary glands, milk accumulation and mammary engorgement were induced by teat-sealing with an adhesive for 0, 6, 12, 18, 24, and 36 h (n = 6 per group) at peak lactation. In non-sealed control glands, histological analysis confirmed a lactating phenotype, indicating suckling by pups throughout the experiment. In contrast, alveoli of teat-sealed glands were distended within 6 h, with maximal luminal size observed by 12 h of non-suckling. By 18 h following teat-sealing, an involuting phenotype was observed, indicated by alveolar lumina engorged with milk vesicles and increased leukocytes. Relative to non-sealed glands, mammary apoptosis was increased in engorged glands 18 h following teat-sealing. The abundance of ZO-1 and occludin proteins was decreased in engorged glands by 12 and 18 h, respectively, following teat-sealing. In contrast, the claudin-1 22 kDa band was increased by 6 h and peaked at 12-18 h, whereas the 28 kDa band declined by 36 h, relative to controls. There were no temporal changes in ZO-1, occludin, and claudin-1 22 kDa proteins within control glands, although there were minor differences in claudin-1 28 kDa. These data indicate that intramammary milk accumulation due to cessation of milk removal is associated with mammary apoptosis. The apoptotic event is preceded by a rapid loss of abundance of ZO-1, occludin and an initial increase in claudin-1. The loss of cell-cell communication may initiate involution and apoptosis of mammary epithelial cells and is a localized intramammary event, occurring only in non-suckled glands. J. Cell. Physiol. 232: 2075-2082, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis , Células Epiteliales/metabolismo , Lactancia , Glándulas Mamarias Animales/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Destete , Animales , Claudina-1/metabolismo , Células Epiteliales/patología , Femenino , Glándulas Mamarias Animales/patología , Ocludina/metabolismo , Fenotipo , Embarazo , Ratas Sprague-Dawley , Transducción de Señal , Uniones Estrechas/patología , Factores de Tiempo , Proteína de la Zonula Occludens-1/metabolismo
3.
J Anim Sci Biotechnol ; 14(1): 119, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37684681

RESUMEN

BACKGROUND: Many phenotypes in animal breeding are derived from incomplete measures, especially if they are challenging or expensive to measure precisely. Examples include time-dependent traits such as reproductive status, or lifespan. Incomplete measures for these traits result in phenotypes that are subject to left-, interval- and right-censoring, where phenotypes are only known to fall below an upper bound, between a lower and upper bound, or above a lower bound respectively. Here we compare three methods for deriving phenotypes from incomplete data using age at first elevation (> 1 ng/mL) in blood plasma progesterone (AGEP4), which generally coincides with onset of puberty, as an example trait. METHODS: We produced AGEP4 phenotypes from three blood samples collected at about 30-day intervals from approximately 5,000 Holstein-Friesian or Holstein-Friesian × Jersey cross-bred dairy heifers managed in 54 seasonal-calving, pasture-based herds in New Zealand. We used these actual data to simulate 7 different visit scenarios, increasing the extent of censoring by disregarding data from one or two of the three visits. Three methods for deriving phenotypes from these data were explored: 1) ordinal categorical variables which were analysed using categorical threshold analysis; 2) continuous variables, with a penalty of 31 d assigned to right-censored phenotypes; and 3) continuous variables, sampled from within a lower and upper bound using a data augmentation approach. RESULTS: Credibility intervals for heritability estimations overlapped across all methods and visit scenarios, but estimated heritabilities tended to be higher when left censoring was reduced. For sires with at least 5 daughters, the correlations between estimated breeding values (EBVs) from our three-visit scenario and each reduced data scenario varied by method, ranging from 0.65 to 0.95. The estimated breed effects also varied by method, but breed differences were smaller as phenotype censoring increased. CONCLUSION: Our results indicate that using some methods, phenotypes derived from one observation per offspring for a time-dependent trait such as AGEP4 may provide comparable sire rankings to three observations per offspring. This has implications for the design of large-scale phenotyping initiatives where animal breeders aim to estimate variance parameters and estimated breeding values (EBVs) for phenotypes that are challenging to measure or prohibitively expensive.

4.
Front Genet ; 13: 867152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957692

RESUMEN

Time-dependent traits are often subject to censorship, where instead of precise phenotypes, only a lower and/or upper bound can be established for some of the individuals. Censorship reduces the precision of phenotypes but can represent compromise between measurement cost and animal ethics considerations. This compromise is particularly relevant for genetic evaluation because phenotyping initiatives often involve thousands of individuals. This research aimed to: 1) demonstrate a data augmentation approach for analysing censored phenotypes, and 2) quantify the implications of phenotype censorship on estimation of heritabilities and predictions of breeding values. First, we simulated uncensored phenotypes, representing fine-scale "age at puberty" for each individual in a population of some 5,000 animals across 50 herds. Analysis of these uncensored phenotypes provided a gold-standard control. We then produced seven "test" phenotypes by superimposing varying degrees of left, interval, and/or right censorship, as if herds were measured on only one, two or three occasions, with a binary measure categorized for animals at each visit (either pre or post pubertal). We demonstrated that our estimates of heritabilities and predictions of breeding values obtained using a data augmentation approach were remarkably robust to phenotype censorship. Our results have important practical implications for measuring time-dependent traits for genetic evaluation. More specifically, we suggest that data collection can be designed with relatively infrequent repeated measures, thereby reducing costs and increasing feasibility across large numbers of animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA