Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37998049

RESUMEN

Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.

2.
Cell Rep ; 42(10): 113196, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37777963

RESUMEN

Maintaining healthy adipose tissue is crucial for metabolic health, requiring a deeper understanding of adipocyte development and response to high-calorie diets. This study highlights the importance of TET3 during white adipose tissue (WAT) development and expansion. Selective depletion of Tet3 in adipose precursor cells (APCs) reduces adipogenesis, protects against diet-induced adipose expansion, and enhances whole-body metabolism. Transcriptomic analysis of wild-type and Tet3 knockout (KO) APCs unveiled TET3 target genes, including Pparg and several genes linked to the extracellular matrix, pivotal for adipogenesis and remodeling. DNA methylation profiling and functional studies underscore the importance of DNA demethylation in gene regulation. Remarkably, targeted DNA demethylation at the Pparg promoter restored its transcription. In conclusion, TET3 significantly governs adipogenesis and diet-induced adipose expansion by regulating key target genes in APCs.


Asunto(s)
Tejido Adiposo , Dioxigenasas , Animales , Humanos , Ratones , Adipocitos/metabolismo , Adipogénesis/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Diferenciación Celular/genética , Dieta , Dioxigenasas/metabolismo , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo
3.
Diabetes ; 71(10): 2084-2093, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772021

RESUMEN

Skeletal muscle is a major regulator of glycemic control at rest, and glucose utilization increases drastically during exercise. Sustaining a high glucose utilization via glycolysis requires efficient replenishment of NAD+ in the cytosol. Apoptosis-inducing mitochondrion-associated factor 2 (AIFM2) was previously shown to be a NADH oxidoreductase domain-containing flavoprotein that promotes glycolysis for diet and cold-induced thermogenesis. Here, we find that AIFM2 is selectively and highly induced in glycolytic extensor digitorum longus (EDL) muscle during exercise. Overexpression (OE) of AIFM2 in myotubes is sufficient to elevate the NAD+-to-NADH ratio, increasing the glycolytic rate. Thus, OE of AIFM2 in skeletal muscle greatly increases exercise capacity, with increased glucose utilization. Conversely, muscle-specific Aifm2 depletion via in vivo transfection of hairpins against Aifm2 or tamoxifen-inducible haploinsufficiency of Aifm2 in muscles decreases exercise capacity and glucose utilization in mice. Moreover, muscle-specific introduction of NDE1, Saccharomyces cerevisiae external NADH dehydrogenase (NDE), ameliorates impairment in glucose utilization and exercise intolerance of the muscle-specific Aifm2 haploinsufficient mice. Together, we show a novel role for AIFM2 as a critical metabolic regulator for efficient utilization of glucose in glycolytic EDL muscles.


Asunto(s)
Glucosa , NAD , Animales , Glucosa/metabolismo , Glucólisis/fisiología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Tamoxifeno/metabolismo
4.
Biomedicines ; 9(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572377

RESUMEN

In COPD patients, non-anemic iron deficiency (NAID) is a common systemic manifestation. We hypothesized that in COPD patients with NAID, iron therapy may improve systemic oxidative stress. The FACE (Ferinject assessment in patients with COPD and iron deficiency to improve exercise tolerance) study was a single-blind, unicentric, parallel-group, placebo-controlled clinical trial (trial registry: 2016-001238-89). Sixty-six patients were enrolled (randomization 2:1): iron arm, n = 44 and placebo arm, n = 22, with similar clinical characteristics. Serum levels of 3-nitrotyrosine, MDA-protein adducts, and reactive carbonyls, catalase, superoxide dismutase (SOD), glutathione, Trolox equivalent antioxidant capacity (TEAC), and iron metabolism biomarkers were quantified in both groups. In the iron-treated patients compared to placebo, MDA-protein adducts and 3-nitrotyrosine serum levels significantly declined, while those of GSH increased and iron metabolism parameters significantly improved. Hepcidin was associated with iron status parameters. This randomized clinical trial evidenced that iron replacement elicited a decline in serum oxidative stress markers along with an improvement in GSH levels in patients with stable severe COPD. Hepcidin may be a surrogate biomarker of iron status and metabolism in patients with chronic respiratory diseases. These findings have potential clinical implications in the management of patients with severe COPD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA