Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23379, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38133921

RESUMEN

Dynamin-related protein 1 (Drp1) is a cytosolic GTPase protein that when activated translocates to the mitochondria, meditating mitochondrial fission and increasing reactive oxygen species (ROS) in cardiomyocytes. Drp1 has shown promise as a therapeutic target for reducing cardiac ischemia/reperfusion (IR) injury; however, the lack of specificity of some small molecule Drp1 inhibitors and the reliance on the use of Drp1 haploinsufficient hearts from older mice have left the role of Drp1 in IR in question. Here, we address these concerns using two approaches, using: (a) short-term (3 weeks), conditional, cardiomyocyte-specific, Drp1 knockout (KO) and (b) a novel, highly specific Drp1 GTPase inhibitor, Drpitor1a. Short-term Drp1 KO mice exhibited preserved exercise capacity and cardiac contractility, and their isolated cardiac mitochondria demonstrated increased mitochondrial complex 1 activity, respiratory coupling, and calcium retention capacity compared to controls. When exposed to IR injury in a Langendorff perfusion system, Drp1 KO hearts had preserved contractility, decreased reactive oxygen species (ROS), enhanced mitochondrial calcium capacity, and increased resistance to mitochondrial permeability transition pore (MPTP) opening. Pharmacological inhibition of Drp1 with Drpitor1a following ischemia, but before reperfusion, was as protective as Drp1 KO for cardiac function and mitochondrial calcium homeostasis. In contrast to the benefits of short-term Drp1 inhibition, prolonged Drp1 ablation (6 weeks) resulted in cardiomyopathy. Drp1 KO hearts were also associated with decreased ryanodine receptor 2 (RyR2) protein expression and pharmacological inhibition of the RyR2 receptor decreased ROS in post-IR hearts suggesting that changes in RyR2 may have a role in Drp1 KO mediated cardioprotection. We conclude that Drp1-mediated increases in myocardial ROS production and impairment of mitochondrial calcium handling are key mechanisms of IR injury. Short-term inhibition of Drp1 is a promising strategy to limit early myocardial IR injury which is relevant for the therapy of acute myocardial infarction, cardiac arrest, and heart transplantation.


Asunto(s)
Dinaminas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Ratones , Calcio/metabolismo , Dinaminas/metabolismo , Homeostasis , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
Neurocrit Care ; 36(1): 61-70, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34268646

RESUMEN

BACKGROUND: Neurological injury following successful resuscitation from sudden cardiac arrest (CA) is common. The pathophysiological basis of this injury remains poorly understood, and treatment options are limited. Microglial activation and neuroinflammation are established contributors to many neuropathologies, such as Alzheimer disease and traumatic brain injury, but their potential role in post-CA injury has only recently been recognized. Here, we hypothesize that microglial activation that occurs following brief asystolic CA is associated with neurological injury and represents a potential therapeutic target. METHODS: Adult C57BL/6 male and female mice were randomly assigned to 12-min, KCl-induced asystolic CA, under anesthesia and ventilation, followed by successful cardiopulmonary resuscitation (n = 19) or sham intervention (n = 11). Neurological assessments of mice were performed using standardized neurological scoring, video motion tracking, and sensory/motor testing. Mice were killed at 72 h for histological studies; neuronal degeneration was assessed using Fluoro-Jade C staining. Microglial characteristics were assessed by immunohistochemistry using the marker of ionized calcium binding adaptor molecule 1, followed by ImageJ analyses for cell integrity density and skeletal analyses. RESULTS: Neurological injury in post-cardiopulmonary-resuscitation mice vs. sham mice was evident by poorer neurological scores (difference of 3.626 ± 0.4921, 95% confidence interval 2.618-4.634), sensory and motor functions (worsened by sixfold and sevenfold, respectively, compared with baseline), and locomotion (75% slower with a 76% decrease in total distance traveled). Post-CA brains demonstrated evidence of neurodegeneration and neuroinflammatory microglial activation. CONCLUSIONS: Extensive microglial activation and neurodegeneration in the CA1 region and the dentate gyrus of the hippocampus are evident following brief asystolic CA and are associated with severe neurological injury.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Modelos Animales de Enfermedad , Femenino , Paro Cardíaco/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo
3.
Neurocrit Care ; 34(1): 64-72, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32358767

RESUMEN

BACKGROUND: Cardiac arrest (CA) patients who survived by cardiopulmonary resuscitation (CPR) can present different levels of neurological deficits ranging from minor cognitive impairments to persistent vegetative state and brain death. The pathophysiology of the resulting brain injury is poorly understood, and whether changes in post-CA brain metabolism contribute to the injury are unknown. Here we utilized [18F]fluorodeoxyglucose (FDG)-Positron emission tomography (PET) to study in vivo cerebral glucose metabolism 72 h following CA in a murine CA model. METHODS: Anesthetized and ventilated adult C57BL/6 mice underwent 12-min KCl-induced CA followed by CPR. Seventy-two hours following CA, surviving mice were intraperitoneally injected with [18F]FDG (~ 186 µCi/200 µL) and imaged on Molecubes preclinical micro-PET/computed tomography (CT) imaging systems after a 30-min awake uptake period. Brain [18F]FDG uptake was determined by the VivoQuant software on fused PET/CT images with the 3D brain atlas. Upon completion of Positron emission tomography (PET) imaging, remaining [18F]FDG radioactivity in the brain, heart, and liver was determined using a gamma counter. RESULTS: Global increases in brain [18F]FDG uptake in post-CA mice were observed compared to shams and controls. The median standardized uptake value of [18F]FDG for CA animals was 1.79 versus sham 1.25 (p < 0.05) and control animals 0.78 (p < 0.01). This increased uptake was consistent throughout the 60-min imaging period and across all brain regions reaching statistical significance in the midbrain, pons, and medulla. Biodistribution analyses of various key organs yielded similar observations that the median [18F]FDG uptake for brain was 7.04%ID/g tissue for CA mice versus 5.537%ID/g tissue for sham animals, p < 0.05). CONCLUSIONS: This study has successfully applied [18F]FDG-PET/CT to measure changes in brain metabolism in a murine model of asystolic CA. Our results demonstrate increased [18F]FDG uptake in the brain 72 h following CA, suggesting increased metabolic demand in the case of severe neurological injury. Further study is warranted to determine the etiology of these changes.


Asunto(s)
Fluorodesoxiglucosa F18 , Paro Cardíaco , Animales , Encéfalo/diagnóstico por imagen , Glucosa , Paro Cardíaco/diagnóstico por imagen , Humanos , Ratones , Ratones Endogámicos C57BL , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos , Distribución Tisular
4.
Crit Care Med ; 48(2): e133-e140, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939812

RESUMEN

OBJECTIVES: Cardiogenic shock following cardiopulmonary resuscitation for sudden cardiac arrest is common, occurring even in the absence of acute coronary artery occlusion, and contributes to high rates of postcardiopulmonary resuscitation mortality. The pathophysiology of this shock is unclear, and effective therapies for improving clinical outcomes are lacking. DESIGN: Laboratory investigation. SETTING: University laboratory. SUBJECTS: C57BL/6 adult female mice. INTERVENTIONS: Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 4, 8, 12, or 16-minute potassium chloride-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of vehicle (phosphate-buffered saline) or suppressor of site IQ electron leak, an inhibitor of superoxide production by complex I of the mitochondrial electron transport chain. Suppressor of site IQ electron leak and vehicle were administered during cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS: Using a murine model of asystolic cardiac arrest, we discovered that duration of cardiac arrest prior to cardiopulmonary resuscitation determined postresuscitation success rates, degree of neurologic injury, and severity of myocardial dysfunction. Post-cardiopulmonary resuscitation cardiac dysfunction was not associated with myocardial necrosis, apoptosis, inflammation, or mitochondrial permeability transition pore opening. Furthermore, left ventricular function recovered within 72 hours of cardiopulmonary resuscitation, indicative of myocardial stunning. Postcardiopulmonary resuscitation, the myocardium exhibited increased reactive oxygen species and evidence of mitochondrial injury, specifically reperfusion-induced reactive oxygen species generation at electron transport chain complex I. Suppressor of site IQ electron leak, which inhibits complex I-dependent reactive oxygen species generation by suppression of site IQ electron leak, decreased myocardial reactive oxygen species generation and improved postcardiopulmonary resuscitation myocardial function, neurologic outcomes, and survival. CONCLUSIONS: The severity of cardiogenic shock following asystolic cardiac arrest is dependent on the length of cardiac arrest prior to cardiopulmonary resuscitation and is mediated by myocardial stunning resulting from mitochondrial electron transport chain complex I dysfunction. A novel pharmacologic agent targeting this mechanism, suppressor of site IQ electron leak, represents a potential, practical therapy for improving sudden cardiac arrest resuscitation outcomes.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Paro Cardíaco/terapia , Peróxido de Hidrógeno/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Aturdimiento Miocárdico/prevención & control , Superóxidos/antagonistas & inhibidores , Animales , Reanimación Cardiopulmonar , Femenino , Paro Cardíaco/fisiopatología , Ratones , Ratones Endogámicos C57BL , Aturdimiento Miocárdico/fisiopatología , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo
5.
AIDS Care ; 32(7): 882-889, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31514520

RESUMEN

Exercise is commonly prescribed to improve lipid profile and glucose levels in people living with HIV (PLWH). This systematic review was performed in order to examine the effects of exercise interventions on lipid profile and glucose levels on PLWH. Randomized controlled trials (RCTs) investigating the effects of exercise on blood glucose, triglycerides (TG), total cholesterol (TC), HDL and LDL published up to November 2017 were reviewed. Two reviewers assessed inclusion and exclusion criteria, methodological quality and extracted the data. The PEDro scale was used to assess the quality of the included studies. Nine RCTs involving 638 PLWH met inclusion criteria. The median PEDro scale score was 5 out of 10. Three combined aerobic exercise + resistance exercise studies (AE+RE) showed improvements in blood glucose levels, one study showed improvements in HDL, one showed improvements in TG, and one showed improvements in TC. The AE only study reported improvements in HDL, while the RE only study reported improvements in TG, TC, HDL and LDL. Exercise can be effective for the improvement of some metabolic parameters, especially blood glucose and HDL. However, due to methodological issues, small number of studies and differences in exercise protocols, these findings should be interpreted with caution.


Asunto(s)
Glucemia , Infecciones por VIH , Ejercicio Físico , Infecciones por VIH/terapia , Humanos , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Crit Care Med ; 43(2): e38-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25599491

RESUMEN

OBJECTIVES: Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation and the use of therapeutic hypothermia. Dynamin-related protein 1, a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that dynamin-related protein 1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest. DESIGN: Laboratory investigation. SETTING: University laboratory. INTERVENTIONS: Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-minute KCl-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of Mdivi-1 (0.24 mg/kg), a small molecule dynamin-related protein 1 inhibitor or vehicle (dimethyl sulfoxide). MEASUREMENTS AND MAIN RESULTS: Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by dynamin-related protein 1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during cardiopulmonary resuscitation inhibited dynamin-related protein 1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (116 ± 4 vs 143 ± 7 s; p < 0.001) during cardiopulmonary resuscitation and enhanced myocardial performance post-return of spontaneous circulation. These improvements were associated with significant increases in survival (65% vs 33%) and improved neurological scores up to 72 hours post cardiac arrest. CONCLUSIONS: Post-cardiac arrest inhibition of dynamin-related protein 1 improves time to return of spontaneous circulation and myocardial hemodynamics, resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Paro Cardíaco/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Quinazolinonas/farmacología , Aconitato Hidratasa/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Distribución Aleatoria
7.
Zhong Yao Cai ; 38(6): 1290-4, 2015 Jun.
Artículo en Zh | MEDLINE | ID: mdl-26762071

RESUMEN

OBJECTIVE: To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. METHODS: The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. RESULTS: The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. CONCLUSION: The preparation process is simple, stable and feasible.


Asunto(s)
Portadores de Fármacos , Lípidos/química , Nanopartículas , Oenothera biennis/química , Ácidos Linoleicos/química , Tamaño de la Partícula , Aceites de Plantas/química , Polietilenglicoles , Ácido gammalinolénico/química
8.
Circ Res ; 110(11): 1484-97, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22511751

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. OBJECTIVE: We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. METHODS AND RESULTS: Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1-dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl(2) or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. CONCLUSIONS: DRP-1-mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.


Asunto(s)
Proliferación Celular , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Hipertensión Pulmonar/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Musculares/enzimología , Proteínas Mitocondriales/metabolismo , Mitosis , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Animales , Antihipertensivos/farmacología , Proteína Quinasa CDC2/metabolismo , Estudios de Casos y Controles , Puntos de Control del Ciclo Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cobalto , Ciclina B1/metabolismo , Modelos Animales de Enfermedad , Dinaminas/genética , Activación Enzimática , Hipertensión Pulmonar Primaria Familiar , GTP Fosfohidrolasas/genética , Terapia Genética/métodos , Glucólisis , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/terapia , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Proteínas Mitocondriales/genética , Mitosis/efectos de los fármacos , Monocrotalina , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Fosforilación , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Quinazolinonas/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Serina , Factores de Tiempo , Transfección
9.
Am J Respir Crit Care Med ; 187(8): 865-78, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23449689

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.


Asunto(s)
GTP Fosfohidrolasas/deficiencia , Proteínas de Choque Térmico/deficiencia , Hipertensión Pulmonar/fisiopatología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/deficiencia , Factores de Transcripción/deficiencia , Animales , Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Tolerancia al Ejercicio/efectos de los fármacos , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Pulmón/citología , Pulmón/patología , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/deficiencia , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/administración & dosificación , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Atrofia Óptica Autosómica Dominante/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas , Ratas Sprague-Dawley
10.
PLoS One ; 19(1): e0297301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38206933

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0215905.].

11.
Circulation ; 126(24): 2859-69, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23124027

RESUMEN

BACKGROUND: The cause and consequences of impaired adrenergic signaling in right ventricular failure/hypertrophy (RVH) are poorly understood. We hypothesized that G protein-coupled receptor kinase-2 (GRK2)-mediated uncoupling of ß-adrenergic receptor signaling impairs inotropic reserve. The implications of right ventricular (RV) adrenergic remodeling for inotrope selection and the therapeutic benefit of interrupting Gßγ-GRK2 interaction, using gallein, were tested. METHODS AND RESULTS: Chamber-specificity and cellular localization of adrenergic remodeling were compared in rodent RVH associated with pulmonary arterial hypertension (PAH-RVH; SU5416+chronic-hypoxia or Monocrotaline) versus pulmonary artery banding-induced RVH (PAB-RVH). Results were corroborated in RV arrays from 10 PAH patients versus controls. Inotropic reserve was assessed in RV- and left ventricular-Langendorff models and in vivo. Gallein therapy (1.8 mg/kg/day ×2-weeks) was assessed. Despite similar RVH, cardiac output (58.3±4.9 versus 82.9±4.8 mL/min; P<0.001) and treadmill distance (41.5±11.6 versus 244.1±12.4 m; P<0.001) were lower in PAH-RVH versus PAB-RVH. In PAH-RVH versus PAB-RVH there was greater downregulation of ß1-, α1- and dopamine-1 receptors, more left ventricular involvement, and greater impairment of RV contractile reserve. RV GRK2 activity increased in parallel with a reduction in both adrenergic receptor expression and inotrope-stimulated cAMP levels (P<0.01). ß1-receptor downregulation also occurred in human PAH-RVH. Dobutamine was superior to dopamine as an RV inotrope, both ex vivo and in vivo. CONCLUSIONS: GRK2-mediated desensitization-downregulation of adrenergic and dopaminergic receptors impairs inotropic reserve in PAH-RVH. Acute inotropic support in RVH is best accomplished by dobutamine, reflecting its better coupling to adenylyl cyclase and the reliance of dopamine on dopamine-1-receptor signaling, which is impaired in RVH. Inhibiting Gßγ-GRK2 interactions has therapeutic benefit in RVH.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Receptores Adrenérgicos beta/metabolismo , Receptores de Dopamina D1/metabolismo , Xantenos/farmacología , Animales , Cardiotónicos/farmacología , Células Cultivadas , Dobutamina/farmacología , Dopamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Femenino , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Masculino , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/genética , Receptores de Dopamina D1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Am J Respir Crit Care Med ; 185(6): 670-9, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246173

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is a proliferative arteriopathy associated with glucose transporter-1 (Glut1) up-regulation and a glycolytic shift in lung metabolism. Glycolytic metabolism can be detected with the positron emission tomography (PET) tracer (18)F-fluorodeoxyglucose (FDG). OBJECTIVES: The precise cell type in which glycolytic abnormalities occur in PAH is unknown. Moreover, whether FDG-PET is sufficiently sensitive to monitor PAH progression and detect therapeutic regression is untested. We hypothesized that increased lung FDG-PET reflects enhanced glycolysis in vascular cells and is reversible in response to effective therapies. METHODS: PAH was induced in Sprague-Dawley rats by monocrotaline or chronic hypoxia (10% oxygen) in combination with Sugen 5416. Monocrotaline rats were treated with oral dichloroacetate or daily imatinib injections. FDG-PET scans and pulmonary artery acceleration times were obtained weekly. The origin of the PET signal was assessed by laser capture microdissection of airway versus vascular tissue. Metabolism was measured in pulmonary artery smooth muscle cell (PASMC) cultures, using a Seahorse extracellular flux analyzer. MEASUREMENTS AND MAIN RESULTS: Lung FDG increases 1-2 weeks after monocrotaline (when PAH is mild) and is normalized by dichloroacetate and imatinib, which both also regress medial hypertrophy. Glut1 mRNA is up-regulated in both endothelium and PASMCs, but not airway cells or macrophages. PASMCs from monocrotaline rats are hyperproliferative and display normoxic activation of hypoxia-inducible factor-1α (HIF-1α), which underlies their glycolytic phenotype. CONCLUSIONS: HIF-1α-mediated Glut1 up-regulation in proliferating vascular cells in PAH accounts for increased lung FDG-PET uptake. FDG-PET is sensitive to mild PAH and can monitor therapeutic changes in the vasculature.


Asunto(s)
Fluorodesoxiglucosa F18 , Hipertensión Pulmonar/diagnóstico por imagen , Monitoreo Fisiológico/métodos , Tomografía de Emisión de Positrones/métodos , Presión Esfenoidal Pulmonar/fisiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipertensión Pulmonar Primaria Familiar , Fluorodesoxiglucosa F18/farmacocinética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Consumo de Oxígeno , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
13.
Plants (Basel) ; 12(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987095

RESUMEN

Manganese deficiency critically impairs the function and stability of photosystem II (PSII) and negatively impacts crop growth and yield. However, the response mechanisms of carbon and nitrogen metabolism to Mn deficiency in different genotypes of maize and the differences in Mn deficiency tolerance are unclear. Herein, three different genotypes of maize seedlings (sensitive genotype: Mo17, tolerant genotype: B73, and B73 × Mo17) were exposed to Mn deficiency treatment for 16 days using liquid culture with different concentrations of MnSO4 [0.00, 2.23, 11.65, and 22.30 mg/L (control)]. We found that complete Mn deficiency significantly reduced maize seedling biomass; negatively affected the photosynthetic and chlorophyll fluorescence parameters; and depressed nitrate reductase, glutamine synthetase, and glutamate synthase activity. This resulted in reduced leaf and root nitrogen uptake, with Mo17 being most severely inhibited. B73 and B73 × Mo17 maintained higher sucrose phosphate synthase and sucrose synthase activities and lower neutral convertase activity compared to Mo17, which resulted in higher accumulation of soluble sugars and sucrose and maintenance of the osmoregulation capacity of leaves, which helped mitigate damage caused by Mn deficiency. The findings revealed the physiological regulation mechanism of carbon and nitrogen metabolism in different genotypes of maize seedlings that resist Mn deficiency stress, providing a theoretical basis for developing high yield and quality.

14.
Am J Respir Crit Care Med ; 183(8): 1080-91, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21148721

RESUMEN

RATIONALE: The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES: We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS: Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS: CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS: HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Síndrome Hepatopulmonar/inmunología , Macrófagos/inmunología , Animales , Antígenos CD/fisiología , Antígenos de Diferenciación Mielomonocítica/fisiología , Malformaciones Arteriovenosas/etiología , Malformaciones Arteriovenosas/fisiopatología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Síndrome Hepatopulmonar/etiología , Humanos , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/inmunología , Macrófagos/fisiología , Masculino , Músculo Liso Vascular/fisiopatología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/fisiología , Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Factor de Crecimiento Derivado de Plaquetas/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/fisiología
15.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365438

RESUMEN

The research aimed to assess the contribution of fertilizer, density, and row spacing in integrated cultivation measures and identify their regulation mechanism on canopy architecture and factors in biomass accumulation in spring maize. Zhengdan 958 was used as the experimental material, and the optimum mode (OM) was identified based on a preliminary experiment, including the optimal fertilizer management, suitable plant density and wide-narrow row spacing, and dramatic yield performance (11,445.16 kg ha-1 in 2017). Then, the effects of these practices on maize canopy structure performance were analyzed using the omission factors design experiment in optimum mode (OM). Treatments were set as follows: without fertilization (OM-F), without density (OM-D), and without wide-narrow plant spacing (OM-S). The results showed that the contribution of fertilization was maximum (23.85%), the second was intensive planting (16.05%), which promoted nitrogen accumulation and transport in leaves and stems via increased leaf area index and dry matter accumulation around the anthesis simultaneously, elevating the radiation utilization efficiency of the canopy and allowing a higher grain weight to be obtained. Wide-narrow row spacing yield contribution is minimum among the measures (8.649%), which could regulate the leaf and radiation transmittance in the middle and bottom layer of the canopy, while increasing the nitrogen accumulation of leaves and stalks in the silking stage, then significantly enhance the nitrogen transport and the matter accumulation of maize after anthesis. Our results showed that fertilizer management and density were the essential practices for integrated cultivation mode for northeast China. Moreover, wide-narrow row planting was advocated if permitted, which could elevate the utilization efficiency of radiation to 1%, and the yield of more than 11,000 kg ha-1 was obtained in Northeast China.

16.
Front Plant Sci ; 13: 993675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160952

RESUMEN

Cadmium (Cd) stress is one of the principal abiotic stresses that inhibit maize growth. The research was to explore (hemin chloride) Hemin (100 µmol L-1) on photosynthesis, ascorbic acid (AsA)-glutathione (GSH) cycle system, and polyamine metabolism of maize under Cd stress (85 mg L-1) using nutrient solution hydroponics, with Tiannong 9 (Cd tolerant) and Fenghe 6 (Cd sensitive) as experimental materials. The results showed that Hemin can increase leaf photosynthetic pigment content and ameliorate the ratio of Chlorophyll a/chlorophyll b (Chla/Chlb) under Cd stress. The values of ribose 1, 5-diphosphate carboxylase/oxygenase (RuBPcase) and phosphoenolpyruvate carboxylase (PEPCase), and total xanthophyll cycle pool [(violoxanthin (V), antiflavin (A) and zeaxanthin (Z)] increased, which enhancing xanthophyll cycle (DEPS) de-epoxidation, and alleviating stomatal and non-stomatal limitation of leaf photosynthesis. Hemin significantly increased net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate (Tr ), photochemical quenching coefficient (qP), PSII maximum photochemical efficiency (Fv/Fm ), and electron transfer rate (ETR), which contributed to the improvement of the PSII photosynthetic system. Compared with Cd stress, Hemin can reduce thiobartolic acid reactant (TBARS) content, superoxide anion radical (O2 -) production rate, hydrogen peroxide (H2O2) accumulation, and the extent of electrolyte leakage (EL); decreased the level of malondialdehyde (MDA) content and increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); slowed the decrease in dehydroascorbic acid reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activity and the increase in glutathione reductase (GR) and ascorbate peroxidase (APX) activity in leaves; promoted the increase in AsA and GSH content, decreased dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and increased AsA/DHA and GSH/GSSG ratios under Cd stress. Hemin promoted the increase of conjugated and bound polyamine content, and the conversion process speed of free putrescine (Put) to free spermine (Spm) and spermidine (Spd) in maize; decreased polyamine oxidase (PAO) activity and increased diamine oxidase (DAO), arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) enzyme activities in leaves under Cd stress.

17.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33411695

RESUMEN

Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel ß1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. ß1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of ß1 by BACE1 and γ-secretase and show that ß1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by ß1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks ß1-ICD signaling, suggesting that the ß1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel ß1 subunits.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Acoplamiento Excitación-Contracción/genética , Acoplamiento Excitación-Contracción/fisiología , Expresión Génica , Células HEK293 , Humanos , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteolisis , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Transducción de Señal , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/deficiencia , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
18.
J Prim Care Community Health ; 10: 2150132719844062, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044638

RESUMEN

The purpose of this study was to determine the validity and reliability of the Exercise Vital Sign (EVS) questionnaire in an ethnically diverse sample. Participants (N = 39) were asked to wear an accelerometer at the hip for at least 7 days and to complete the EVS at the beginning (T1) and end (T2) of the wear period. The EVS questionnaire validity was determined against accelerometry, and bias was calculated as the mean difference between measures. The sensitivity and specificity of the EVS questionnaire were also evaluated. The reliability of the questionnaire was calculated using intraclass correlation coefficient (ICC) between EVS responses at T1 and T2. The mean difference in EVS- and accelerometer-determined time in MVPA was 24 min/wk. The reliability for the questionnaire was excellent (ICC = 0.98). The EVS specificity and sensitivity at T2 were 56% and 78%, respectively. The EVS questionnaire may be an acceptable measure of weekly MVPA time compared to accelerometry in an ethnically diverse sample; however, further research is needed to confirm these findings.


Asunto(s)
Acelerometría , Etnicidad , Ejercicio Físico , Autoinforme , Adulto , Negro o Afroamericano , Asiático , Femenino , Hispánicos o Latinos , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Reproducibilidad de los Resultados , Conducta Sedentaria , Encuestas y Cuestionarios , Signos Vitales , Población Blanca , Adulto Joven
19.
PLoS One ; 14(4): e0215905, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31017964

RESUMEN

The alpha subunit of the voltage gated human ether-a-go-go-related (hERG) potassium channel regulates cell excitability in a broad range of cell lines. HERG channels are also expressed in a variety of cancer cells and control cell proliferation and apoptosis. Hypoxia, a common feature of tumors, alters gating properties of hERG currents in SH-SY5Y neuroblastoma cells. In the present study, we examined the molecular mechanisms and physiological significance underlying hypoxia-altered hERG currents in SH-SY5Y neuroblastoma cells. Hypoxia reduced the surface expression of 150kDa form and increased 125kDa form of hERG protein expression in the endoplasmic reticulum (ER). The changes in protein expression were associated with ~50% decrease in hERG potassium conductance. ER retention of hERG 125kDa form by CH was due to defective trafficking and was rescued by exposing cells to hypoxia at low temperatures or treatment with E-4031, a hERG channel blocker. Prolonged association of hERG with molecular chaperone Hsp90 resulting in complex oligomeric insoluble aggregates contributed to ER accumulation and trafficking defect. Hypoxia increased reactive oxygen species (ROS) levels and manganese (111) tetrakis (1methyl-4-pyridyl) porphyrin pentachloride, a membrane-permeable antioxidant prevented hypoxia-induced degradation of 150kDa and accumulation of 125kDa forms. Impaired trafficking of hERG by hypoxia was associated with reduced cell proliferation and this effect was prevented by antioxidant treatment. These results demonstrate that hypoxia through increased oxidative stress impairs hERG trafficking, leading to decreased K+ currents resulting in cell cycle arrest in SH-SY5Y cells.


Asunto(s)
Puntos de Control del Ciclo Celular , Canales de Potasio Éter-A-Go-Go/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo
20.
Physiol Genomics ; 33(3): 312-22, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18334547

RESUMEN

Relaxation abnormalities are prevalent in heart failure and contribute to clinical outcomes. Disruption of Ca2+ homeostasis in heart failure delays relaxation by prolonging the intracellular Ca2+ transient. We sought to speed cardiac relaxation in vivo by cardiac-directed transgene expression of parvalbumin (Parv), a cytosolic Ca2+ buffer normally expressed in fast-twitch skeletal muscle. A key feature of Parv's function resides in its Ca2+/Mg2+ binding affinities that account for delayed Ca2+ buffering in response to the intracellular Ca2+ transient. Cardiac Parv expression decreased sarcoplasmic reticulum Ca2+ content without otherwise altering intracellular Ca2+ homeostasis. At high physiological mouse heart rates in vivo, Parv modestly accelerated relaxation without affecting cardiac morphology or systolic function. Ex vivo pacing of the isolated heart revealed a marked heart rate dependence of Parv's delayed Ca2+ buffering effects on myocardial performance. As the pacing frequency was lowered (7 to 2.5 Hz), the relaxation rates increased in Parv hearts. However, as pacing rates approached the dynamic range in humans, Parv hearts demonstrated decreased contractility, consistent with Parv buffering systolic Ca2+. Mathematical modeling and in vitro studies provide the underlying mechanism responsible for the frequency-dependent fractional Ca2+ buffering action of Parv. Future studies directed toward refining the dose and frequency-response relationships of Parv in the heart or engineering novel Parv-based Ca2+ buffers with modified Mg2+ and Ca2+ affinities to limit systolic Ca2+ buffering may hold promise for the development of new therapies to remediate relaxation abnormalities in heart failure.


Asunto(s)
Calcio/metabolismo , Expresión Génica/fisiología , Frecuencia Cardíaca/fisiología , Miocardio/metabolismo , Parvalbúminas/biosíntesis , Parvalbúminas/genética , Animales , Tampones (Química) , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Estimulación Cardíaca Artificial , Expresión Génica/genética , Frecuencia Cardíaca/genética , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Cardiovasculares , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Técnicas de Cultivo de Órganos , Especificidad de Órganos/genética , Ratas , Retículo Sarcoplasmático/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA