Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240020

RESUMEN

There has been increasing interest in adjunctive use of anti-inflammatory drugs to control periodontitis. This study was performed to examine the effects of pirfenidone (PFD) on alveolar bone loss in ligature-induced periodontitis in mice and identify the relevant mechanisms. Experimental periodontitis was established by ligating the unilateral maxillary second molar for 7 days in mice (n = 8 per group), and PFD was administered daily via intraperitoneal injection. The micro-computed tomography and histology analyses were performed to determine changes in the alveolar bone following the PFD administration. For in vitro analysis, bone marrow macrophages (BMMs) were isolated from mice and cultured with PFD in the presence of RANKL or LPS. The effectiveness of PFD on osteoclastogenesis, inflammatory cytokine expression, and NF-κB activation was determined with RT-PCR, Western blot, and immunofluorescence analyses. PFD treatment significantly inhibited the ligature-induced alveolar bone loss, with decreases in TRAP-positive osteoclasts and expression of inflammatory cytokines in mice. In cultured BMM cells, PFD also inhibited RANKL-induced osteoclast differentiation and LPS-induced proinflammatory cytokine (IL-1ß, IL-6, TNF-a) expression via suppressing the NF-κB signal pathway. These results suggest that PFD can suppress periodontitis progression by inhibiting osteoclastogenesis and inflammatory cytokine production via inhibiting the NF-κB signal pathway, and it may be a promising candidate for controlling periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , FN-kappa B/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/metabolismo , Microtomografía por Rayos X , Lipopolisacáridos/farmacología , Transducción de Señal , Osteoclastos/metabolismo , Periodontitis/tratamiento farmacológico , Periodontitis/etiología , Periodontitis/metabolismo , Citocinas/metabolismo , Ligando RANK/metabolismo
2.
J Infect Dis ; 225(11): 1991-2001, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235942

RESUMEN

BACKGROUND: Antigens of migrating schistosomula are promising candidates as schistosomiasis vaccine targets, since immune attack on hepatic schistosomula would interrupt the parasites life cycle and reduce egg burden on the host. METHODS: In this study, we report a collection of Schistosoma japonicum schistosomula proteins (SjScPs) that are highly expressed in hepatic schistosomula. The expression characteristics, antigenicity and immune protection of these proteins were studied by western blot, ELISA, immunofluorescence and challenge assays. RESULTS: We found that several of these SjScPs were highly antigenic and could effectively stimulate humoral immune responses in both human and other mammalian hosts. In particular, SjScP25, SjScP37, SjScP41, SjScP80, and SjScP88 showed high potential as biomarkers for schistosomiasis immunodiagnosis. Furthermore, we demonstrated that immunization with several of the recombinant SjScPs were able to protect mice from S japonicum challenge infection, with SjScP25 generating the most protective results. CONCLUSIONS: Our work represents a group of novel schistosome immunogens, which may be promising schistosomiasis japonica diagnosis and vaccine candidates.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Vacunas , Animales , Pruebas Inmunológicas , Mamíferos , Ratones , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/prevención & control
3.
J Infect Dis ; 214(10): 1547-1556, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27638944

RESUMEN

Cell-mediated immune responses play important roles in immune protection against Plasmodium infection. However, impaired immunity, such as lymphocyte exhaustion, is a common phenomenon in malaria. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) is an important regulatory molecule in cell-mediated immunity and has been implicated in malaria. In this study, it was found that Tim-3 expression on key populations of lymphocytes was significantly increased in both Plasmodium falciparum-infected patients and Plasmodium berghei ANKA (PbANKA)-infected C57BL/6 mice. Upregulation of Tim-3 led to lymphocyte exhaustion, while blocking Tim-3 signaling with an anti-Tim-3 antibody restored lymphocyte activity in Plasmodium infections. Further, anti-Tim-3 treatment accelerated the parasite clearance and relieved the symptoms of cerebral malaria in PbANKA-infected mice. In conclusion, Tim-3 on immune cells negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3 signaling enhances sterile immunity and may play a protective role during malarial parasite infections.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Inmunidad Celular , Malaria/inmunología , Plasmodium falciparum/inmunología , Animales , Voluntarios Sanos , Receptor 2 Celular del Virus de la Hepatitis A/antagonistas & inhibidores , Humanos , Masculino , Ratones Endogámicos C57BL , Plasmodium berghei/inmunología
4.
J Infect Dis ; 214(8): 1225-34, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27190177

RESUMEN

BACKGROUND: One major obstacle to schistosomiasis prevention and control is the lack of accurate and sensitive diagnostic approaches, which are essential for planning, targeting, and evaluating disease control efforts. METHODS: Based on bioinformatics analysis, we identified a multigene family of saposin-like protein (SAPLP) in the schistosome genomes. Schistosoma japonicum SAPLPs (SjSAPLPs), including recently reported promising biomarker SjSP-13, were systematically and comparatively assessed as immunodiagnostic antigens for schistosomiasis japonica. RESULTS: Two novel antigens (SjSAPLP4 and SjSAPLP5) could specifically react to serum samples from both S. japonicum-infected laboratory animals and patients. The sensitivities of SjSAPLP4, SjSAPLP5, and SjSP-13 for immunodiagnosis were 98% (95% confidence interval, 88.0%-99.9%), 96% (85.1%-99.3%), and 88% (75.0%-95.0%), respectively, and 100% (91.1%-100%) specificity was observed for the 3 antigens with enzyme-linked immunosorbent assay; there was no cross-reaction with clonorchiosis (0 of 19 patients), echinococcosis (0 of 20 patients), or trichinellosis (0 of 18 patients) for the 3 antigens. Antibodies to the 3 antigens could be detected in the serum samples of rabbits infected with 1000 cercariae as early as 3-4 weeks after infection. CONCLUSIONS: These results suggest that SjSAPLP4 and SjSAPLP5 could serve as novel biomarkers for the immunodiagnosis of schistosomiasis japonica, which will further improve diagnostic sensitivity and specificity.


Asunto(s)
Biomarcadores/sangre , Familia de Multigenes/genética , Saposinas/sangre , Saposinas/inmunología , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/inmunología , Animales , Anticuerpos Antihelmínticos/inmunología , Antígenos Helmínticos/inmunología , Femenino , Humanos , Pruebas Inmunológicas/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Familia de Multigenes/inmunología , Conejos , Schistosoma japonicum/genética , Esquistosomiasis Japónica/sangre , Esquistosomiasis Japónica/parasitología , Sensibilidad y Especificidad
5.
Infect Immun ; 83(8): 3074-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25987707

RESUMEN

T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4(+) and CD8(+) T cells, NK1.1(+) cells, and CD11b(+) cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8(+) T cells or CD11b(+) cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b(+) cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.


Asunto(s)
Macrófagos/inmunología , Receptores Virales/inmunología , Schistosoma japonicum/fisiología , Esquistosomiasis Japónica/inmunología , Células Th2/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunidad , Células Asesinas Naturales/inmunología , Hígado/inmunología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Virales/genética , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/genética , Esquistosomiasis Japónica/parasitología , Bazo/inmunología
6.
BMC Genomics ; 16: 126, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25766859

RESUMEN

BACKGROUND: Recent advances in studies of the Schistosoma japonicum genome have opened new avenues for the elucidation of parasite biology and the identification of novel targets for vaccines, drug development and early diagnostic tools. RESULTS: In this study, we surveyed the S. japonicum genome database for genes encoding nucleases. A total of 130 nucleases of 3 classes were found. Transcriptional analysis of these genes using a genomic DNA microarray revealed that the majority of the nucleases were differentially expressed in parasites of different developmental stages or different genders, whereas no obvious transcriptional variation was detected in parasites from different hosts. Further analysis of the putative DNases of S. japonicum revealed a novel DNase II homologue (Sjda) that contained a highly conserved catalytic domain. A recombinant Sjda-GST protein efficiently hydrolysed genomic DNA in the absence of divalent iron. Western-blot and immunofluorescence assays showed that Sjda was mainly expressed on the teguments of female adult parasites and induced early humoral immune responses in infected mice. CONCLUSIONS: A novel DNase II homologue, Sjda, was identified in S. japonicum. Sjda was mainly distributed on the teguments of adult female parasites and possessed a typical divalent iron-independent DNA catalytic activity. This protein may play an important role in the host-parasite interaction.


Asunto(s)
Endodesoxirribonucleasas/genética , Interacciones Huésped-Parásitos , Schistosoma japonicum/enzimología , Esquistosomiasis Japónica/genética , Animales , Endodesoxirribonucleasas/biosíntesis , Endodesoxirribonucleasas/aislamiento & purificación , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Schistosoma japonicum/patogenicidad , Esquistosomiasis Japónica/parasitología
7.
PLoS Comput Biol ; 10(10): e1003856, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25275570

RESUMEN

Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s) of individual proteases and may help to refine anti-proteolytic strategies in blood flukes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas del Helminto/genética , Péptido Hidrolasas/genética , Schistosoma japonicum/enzimología , Schistosoma japonicum/genética , Animales , Catepsinas/genética , Catepsinas/metabolismo , Análisis por Conglomerados , Femenino , Proteínas del Helminto/metabolismo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptido Hidrolasas/metabolismo , Filogenia , Platelmintos/enzimología , Platelmintos/genética , Platelmintos/metabolismo , Schistosoma japonicum/metabolismo
8.
BMC Genomics ; 15: 715, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25156522

RESUMEN

BACKGROUND: Schistosoma japonicum is a pathogen of the phylum Platyhelminthes that causes zoonotic schistosomiasis in China and Southeast Asian countries where a lack of efficient measures has hampered disease control. The development of tools for diagnosis of acute and chronic infection and for novel antiparasite reagents relies on understanding the biological mechanisms that the parasite exploits. RESULTS: In this study, the polyadenylated transcripts from the male and female S. japonicum were sequenced using a high-throughput RNA-seq technique. Bioinformatic and experimental analyses focused on post-transcriptional RNA processing, which revealed extensive alternative splicing events in the adult stage of the parasite. The numbers of protein-coding sequences identified in the transcriptomes of the female and male S. japonicum were 15,939 and 19,501 respectively, which is more than predicted from the annotated genome sequence. Further, we identified four types of post-transcriptional processing, or alternative splicing, in both female and male worms of S. japonicum: exon skipping, intron retention, and alternative donor and acceptor sites. Unlike mammalian organisms, in S. japonicum, the alternative donor and acceptor sites were more common than the other two types of post-transcriptional processing. In total, respectively 13,438 and 16,507 alternative splicing events were predicted in the transcriptomes of female and male S. japonicum. CONCLUSIONS: By using RNA-seq technology, we obtained the global transcriptomes of male and female S. japonicum. These results further provide a comprehensive view of the global transcriptome of S. japonicum. The findings of a substantial level of alternative splicing events dynamically occurring in S. japonicum parasitization of mammalian hosts suggest complicated transcriptional and post-transcriptional regulation mechanisms employed by the parasite. These data should not only significantly improve the re-annotation of the genome sequences but also should provide new information about the biology of the parasite.


Asunto(s)
ARN de Helminto/genética , ARN Mensajero/genética , Schistosoma japonicum/genética , Esquistosomiasis/parasitología , Transcriptoma , Empalme Alternativo , Animales , Mapeo Cromosómico , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Sitios Genéticos , Genoma , Masculino , Sistemas de Lectura Abierta , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Conejos , Schistosoma japonicum/metabolismo , Análisis de Secuencia de ARN , Zoonosis
9.
J Proteome Res ; 12(5): 2185-93, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23566259

RESUMEN

The malaria parasite Plasmodium falciparum utilizes host glycosaminoglycans (GAGs) as receptors for erythrocyte invasion and intravascular sequestration. Heparin and heparan sulfate (HS) are GAGs which can block erythrocyte invasion of the P. falciparum merozoite, albeit the molecular mechanisms remain poorly understood. Characterization of these heparin-binding merozoite proteins and key ligands in the host-parasite interplay will lead to a better understanding of the mechanism of erythrocyte invasion by malaria parasites. Here, schizont-derived proteins that bind heparin were enriched by affinity chromatography, and 6062 peptides from 811 P. falciparum-derived proteins were identified by two-dimensional liquid chromatography-mass spectrometry (LC/LC-MS/MS). The proteins were categorized into 14 functional groups ranging from pathogenesis, protein catabolic process to signal transduction. Proteins with predominant peptide counts were found to mainly originate from the rhoptry organelle of merozoites and the parasitized erythrocyte membrane. The profile of the heparin/HS-binding proteome of P. falciparum suggests they have important functions in the biology of the parasite.


Asunto(s)
Antimaláricos/química , Heparina/química , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Antimaláricos/farmacología , Células Cultivadas , Eritrocitos/parasitología , Heparina/farmacología , Interacciones Huésped-Parásitos , Humanos , Datos de Secuencia Molecular , Plasmodium falciparum/efectos de los fármacos , Unión Proteica , Proteoma/química , Proteoma/aislamiento & purificación , Proteómica , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Esquizontes/efectos de los fármacos , Esquizontes/metabolismo , Espectrometría de Masas en Tándem
10.
PLoS Negl Trop Dis ; 17(6): e0011389, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276235

RESUMEN

Identification of promising schistosome antigen targets is crucial for the development of anti-schistosomal strategies. Schistosomes rely on their neuromuscular systems to coordinate important locomotory behaviors. Tyrosine hydroxylase (TH) is critical in the initial rate-limiting step in biosynthesis of catecholamine, the important neuroactive agents, which promote the lengthening of the worm through muscular relaxation and are therefore of great importance to the movement of the organism both within and between its hosts. THs from both Schistosoma mansoni and Schistosoma japonicum and their enzyme activities have been discovered; however, the role of these proteins during infection have not been explored. Herein, a recombinant protein of the nonconserved fragment of S. japonicum TH (SjTH) was produced and the corresponding polyclonal antibody was generated. The expression and antigenicity of SjTH were detected by qRT-PCR, western blotting, immunofluorescence assays, and ELISA. Mice immunized with the recombinant SjTH were challenged with cercariae to evaluate the immunoprotective value of this protein. Our results showed SjTH not only distributed in the head associated with the central nervous system, but also expressed along the tegument and the intestinal intima, which are involved in the movement, coupling and digestion of the parasites and associated with the peripheral nervous system. This protein can effectively stimulate humoral immune responses in mammalian hosts and has high potential as a biomarker for schistosomiasis immunodiagnosis. Furthermore, immunization with recombinant SjTH showed to reduce the worm and egg burden of challenged mice, and to contribute to the systemic balance of the Th1/Th2 responses. Taken together, these results suggest that SjTH is an important pathogenic molecule in S. japonicum and may be a possible target for anti-schistosomal approaches.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Ratones , Schistosoma japonicum/metabolismo , Esquistosomiasis Japónica/diagnóstico , Esquistosomiasis Japónica/prevención & control , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Pruebas Inmunológicas , Mamíferos
11.
Parasit Vectors ; 16(1): 334, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742024

RESUMEN

BACKGROUND: Interruption of parasite reproduction by targeting migrating schistosomula is a promising strategy for managing schistosomiasis. Hepatic schistosomula proteins previously identified based on second-generation schistosome DNA sequencing were found to hold excellent potential for schistosomiasis japonica diagnosis and as vaccine candidates. However, there are still many unknown schistosomula proteins that warrant further investigations. Herein, a novel schistosomula protein, the Schistosoma japonicum erythroid Krüppel-like factor (SjEKLF/KLF1), was explored. METHODS: Sequence alignment was carried out to detect the amino acid sequence characteristics of SjEKLF. The expression profile of SjEKLF was determined by western blot and immunofluorescence analysis. Enzyme-linked immunosorbent assay was used to determine the antigenicity of SjEKLF in hosts. Mice immunised with recombinant SjEKLF were challenged to test the potential value of the protein as an immunoprotective target. RESULTS: SjEKLF is defined as EKLF/KLF1 for its C-terminal DNA-binding domain. SjEKLF is mainly expressed in hepatic schistosomula and male adults and located within the intestinal intima of the parasites. Notably, high levels of SjEKLF-specific antibodies were detected in host sera and SjEKLF exhibited outstanding sensitivity and specificity for schistosomiasis japonica immunodiagnosis but failed to distinguish between ongoing infection and previous exposure. In addition, SjEKLF immunisation reduced the infection in vivo, resulting in decreased worm and egg counts, and alleviated body weight loss and hepatomegaly in infected mice. CONCLUSIONS: Overall, these findings demonstrate that SjEKLF is critical for the infection of S. japonicum and may be a potential target to help control S. japonicum infection and transmission.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Masculino , Ratones , Animales , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
12.
BMB Rep ; 56(10): 545-550, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574806

RESUMEN

Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].


Asunto(s)
FN-kappa B , Osteoporosis , Humanos , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Diferenciación Celular , Osteoporosis/metabolismo
13.
Front Cell Infect Microbiol ; 12: 826818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252036

RESUMEN

Babesiosis poses a serious threat to immunocompromised individuals and the major etiological species of Babesia for human babesiosis is Babesia microti. Merozoites are a critical stage in the life cycle of Babesia microti. Several merozoite proteins have been demonstrated to play important roles in this process; however, most of the merozoite proteins of B. microti remain unknown. In the present study, we identified a novel merozoite protein of B. microti with similar structure to the thioredoxin (Trx)-like domain of the Trx family, which was named as B. microti Trx-like protein (BmTLP). Western blot assays demonstrated that this protein was expressed by B. microti during the erythrocytic infection process, and its expression peaked on day 7 post-infection in vivo. Immunofluorescence assay further showed that this protein is mainly expressed in B. microti merozoites. BmTLP hold both heparin- and erythrocyte-binding properties, which are critical functions of invasion-related proteins. Immunization with recombinant BmTLP imparted significant protection against B. microti infection in mice. Taken together, these results suggest that the novel merozoite protein, BmTLP, is an important pathogenic molecule of B. microti and may be a possible target for the design of babesiosis control strategy.


Asunto(s)
Babesia microti , Babesiosis , Proteínas Protozoarias , Tiorredoxinas , Animales , Babesia microti/genética , Babesia microti/patogenicidad , Babesiosis/parasitología , Ratones , Proteínas Protozoarias/genética , Tiorredoxinas/genética , Virulencia
14.
Tissue Eng Regen Med ; 19(3): 565-575, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34973125

RESUMEN

BACKGROUND: The use of mouse bone marrow mesenchymal stem cells (mBMSCs) represents a promising strategy for performing preclinical studies in the field of cell-based regenerative medicine; however, mBMSCs obtained via conventional isolation methods have two drawbacks, i.e., (i) they are heterogeneous due to frequent macrophage contamination, and (ii) they require long-term culturing for expansion. METHODS: In the present study, we report a novel strategy to generate highly pure mBMSCs using liposomal clodronate. This approach is based on the properties of the two cell populations, i.e., BMSCs (to adhere to the plasticware in culture dishes) and macrophages (to phagocytose liposomes). RESULTS: Liposomal clodronate added during the first passage of whole bone marrow culture was selectively engulfed by macrophages in the heterogeneous cell population, resulting in their effective elimination without affecting the MSCs. This method allowed the generation of numerous high-purity Sca-1+CD44+F4/80- mBMSCs (> 95%) with just one passaging. Comparative studies with mBMSCs obtained using conventional methods revealed that the mBMSCs obtained in the present study had remarkably improved experimental utilities, as demonstrated by in vitro multilineage differentiation and in vivo ectopic bone formation assays. CONCLUSION: Our newly developed method, which enables the isolation of mBMSCs using simple and convenient protocol, will aid preclinical studies based on the use of MSCs.


Asunto(s)
Ácido Clodrónico , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Ácido Clodrónico/farmacología , Liposomas , Macrófagos , Ratones
15.
Front Cell Infect Microbiol ; 11: 777955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956931

RESUMEN

The development of malaria vaccines and medicines depends on the discovery of novel malaria protein targets, but the functions of more than 40% of P. falciparum genes remain unknown. Asexual parasites are the critical stage that leads to serious clinical symptoms and that can be modulated by malaria treatments and vaccines. To identify critical genes involved in the development of Plasmodium parasites within erythrocytes, the expression profile of more than 5,000 genes distributed across the 14 chromosomes of the PF3D7 strain during its six critical developmental stages (merozoite, early-ring, late-ring, early trophozoite, late-trophozoite, and middle-schizont) was evaluated. Hence, a qRT-PCR-based transcriptome of the erythrocytic developmental process of P. falciparum was revealed. Weighted gene coexpression network analyses revealed that a large number of genes are upregulated during the merozoite release process. Further gene ontology analysis revealed that a cluster of genes is associated with merozoite and may be apical complex components. Among these genes, 135 were comprised within chromosome 14, and 80% of them were previously unknown in functions. Western blot and immunofluorescence assays using newly developed corresponding antibodies showed that some of these newly discovered proteins are highly expressed in merozoites. Further invasion inhibition assays revealed that specific antibodies against several novel merozoite proteins can interfere with parasite invasion. Taken together, our study provides a developmental transcriptome of the asexual parasites of P. falciparum and identifies a group of previously unknown merozoite proteins that may play important roles in the process of merozoite invasion.


Asunto(s)
Malaria Falciparum , Merozoítos , Animales , Eritrocitos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma
16.
Clin Exp Otorhinolaryngol ; 14(1): 76-81, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32646202

RESUMEN

OBJECTIVES: Our research group has previously demonstrated that hearing loss might be a risk factor for synaptic loss within the hippocampus and impairment of cognition using an animal model of Alzheimer disease. In this study, after inducing hearing loss in a rat model of Alzheimer disease, the associations of various microRNAs (miRNAs) with cognitive impairment were investigated. METHODS: Rats were divided randomly into two experimental groups: the control group, which underwent sham surgery and subthreshold amyloid-ß infusion and the deaf group, which underwent bilateral cochlear ablation and subthreshold amyloid-ß infusion. All rats completed several cognitive function assessments 11 weeks after surgery, including the object-in-place task (OPT), the novel object recognition task (NOR), the object location task (OLT), and the Y-maze test. After the rats completed these tests, hippocampus tissue samples were assessed using miRNA microarrays. Candidate miRNAs were selected based on the results and then validated with quantitative reverse transcriptionpolymerase chain reaction (qRT-PCR) analyses. RESULTS: The deaf group showed considerably lower scores on the OPT, OLT, and Y-maze test than the control group. The microarray analysis revealed that miR-29b-3p, -30e-5p, -153-3p, -376a-3p, -598-3p, -652-5p, and -873-3p were candidate miRNAs, and qRT-PCR showed significantly higher levels of miR-376a-3p and miR-598-3p in the deaf group. CONCLUSION: These results indicate that miR-376a-3p and miR-598-3p were related to cognitive impairment after hearing loss.

17.
PLoS Negl Trop Dis ; 14(8): e0008609, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822351

RESUMEN

As a unique feature among otherwise hermaphroditic trematodes, Schistosoma species are gonochoric parasites whose sex is genetically determined (ZZ for males and ZW for females). However, schistosome larvae are morphologically identical, and sex can only be discriminated by molecular methods. Here, we integrated published Schistosoma. japonicum transcriptome and genome data to identify W chromosome-specific genes as sex biomarkers. Three W chromosome-specific genes of S. japonicum were identified as sex biomarkers from a panel of 12 genes expressed only in females. An efficient duplex real-time PCR (qPCR) method for sexing cercariae was developed which could identify the sex of cercariae within 2 h without DNA extraction. Moreover, this method can be used to identify not only single-sex but also mixed-sex schistosome-infected snails. We observed a nearly equal proportion of single-male, single-female, and mixed-sex schistosome infections in artificially infected snails. Sex-known schistosome-infected snail models can be efficiently constructed with the aid of duplex qPCR. A field study revealed that single-sex schistosome infections were predominant among naturally infected snails. Finally, a schistosomiasis mouse model based on sex-known cercariae infection was shown to be more reliable than a model based on sex-unknown cercariae infection. The developed duplex qPCR method for sexing S. japonicum cercariae can be widely used for schistosomiasis modeling, genetic experiments, and field-based molecular epidemiological studies.


Asunto(s)
Cercarias/genética , Cromosomas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Schistosoma japonicum/genética , Esquistosomiasis/parasitología , Animales , Biomarcadores , China/epidemiología , ADN/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Esquistosomiasis/epidemiología , Caracoles/parasitología
18.
Front Immunol ; 11: 610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351503

RESUMEN

Induction of humoural immunity is critical for clinical protection against malaria. More than 100 malaria vaccine candidates have been investigated at different developmental stages, but with limited protection. One of the roadblocks constrains the development of malaria vaccines is the poor immunogenicity of the antigens. The objective of this study was to map the linear B-cell epitopes of the Plasmodium falciparum erythrocyte invasion-associated antigens with a purpose of understanding humoural responses and protection. We conducted a large-scale screen using overlapping peptide microarrays of 37 proteins from the P. falciparum parasite, most of which are invasion-associated antigens which have been tested in clinical settings as vaccine candidates, with sera from individuals with various infection episodes. Analysis of the epitome of the antigens revealed that the most immunogenic epitopes were predominantly located in the low-complexity regions of the proteins containing repetitive and/or glutamate-rich motifs in different sequence contexts. However, in vitro assay showed the antibodies specific for these epitopes did not show invasion inhibitory effect. These discoveries indicated that the low-complexity regions of the parasite proteins might drive immune responses away from functional domains, which may be an instructive finding for the rational design of vaccine candidates.


Asunto(s)
Epítopos de Linfocito B/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Anticuerpos Antiprotozoarios/inmunología , Humanos , Inmunidad Humoral , Secuencias Repetitivas de Aminoácido
19.
Cell Death Dis ; 11(5): 344, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393737

RESUMEN

The CUE domain-containing 2 (CUEDC2) protein plays critical roles in many biological processes, such as the cell cycle, inflammation, and tumorigenesis. However, whether CUEDC2 is involved in osteoblast differentiation and plays a role in bone regeneration remains unknown. This study investigated the role of CUEDC2 in osteogenesis and its underlying molecular mechanisms. We found that CUEDC2 is expressed in bone tissues. The expression of CUEDC2 decreased during bone development and BMP2-induced osteoblast differentiation. The overexpression of CUEDC2 suppressed the osteogenic differentiation of precursor cells, while the knockdown of CUEDC2 showed the opposite effect. In vivo studies showed that the overexpression of CUEDC2 decreased bone parameters (bone volume, bone area, and bone mineral density) during ectopic bone formation, whereas its knockdown increased bone volume and the reconstruction percentage of critical-size calvarial defects. We found that CUEDC2 affects STAT3 activation by regulating SOCS3 protein stability. Treatment with a chemical inhibitor of STAT3 abolished the promoting effect of CUEDC2 silencing on osteoblast differentiation. Together, we suggest that CUEDC2 functions as a key regulator of osteoblast differentiation and bone formation by targeting the SOCS3-STAT3 pathway. CUEDC2 manipulation could serve as a therapeutic strategy for controlling bone disease and regeneration.


Asunto(s)
Diferenciación Celular , Osteoblastos/metabolismo , Osteogénesis , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Cráneo/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Células 3T3 , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/patología , Fosforilación , Estabilidad Proteica , Proteínas Represoras/genética , Transducción de Señal , Cráneo/patología , Cráneo/cirugía
20.
Anal Bioanal Chem ; 394(6): 1637-43, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19513703

RESUMEN

Locked nucleic acid (LNA) is a deoxyribonucleotide analogue with an unusual 'locked' furanose conformation. LNA-modified oligonucleotide probes have demonstrated an enhanced binding affinity towards their complementary strands; however, their potential to discriminate non-complementary hybridization of mismatches has not been explored. In this study, we investigated the effect of the chemical nature of LNA nucleobases on the hybridization stability and the capability of LNA-modified oligonucleotides to discriminate the LNA:DNA mismatched base pairs. It was observed that LNA modification indeed improves the discrimination capability of oligonucleotides by increasing the melting temperature differences between the complementary duplexes and hybrids containing mismatches. Particularly, LNA purines offer a greater potential to recognize the mismatches than LNA pyrimidines and DNA purines. Real-time PCR experiments further confirmed that LNA modifications at the 3'-end are more effective. The results and conclusions in this study provide useful information for hybridization-based nucleic acid analysis where designing sound oligonucleotide probes is crucial to the success of the analyses.


Asunto(s)
Hibridación de Ácido Nucleico/métodos , Sondas de Oligonucleótidos/análisis , Oligonucleótidos/análisis , Disparidad de Par Base , ADN Complementario , Desnaturalización de Ácido Nucleico , Sondas de Oligonucleótidos/genética , Oligonucleótidos/química , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA