Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 271, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208589

RESUMEN

BACKGROUND: To reduce the cost of genomic selection, a low-density (LD) single nucleotide polymorphism (SNP) chip can be used in combination with imputation for genotyping selection candidates instead of using a high-density (HD) SNP chip. Next-generation sequencing (NGS) techniques have been increasingly used in livestock species but remain expensive for routine use for genomic selection. An alternative and cost-efficient solution is to use restriction site-associated DNA sequencing (RADseq) techniques to sequence only a fraction of the genome using restriction enzymes. From this perspective, use of RADseq techniques followed by an imputation step on HD chip as alternatives to LD chips for genomic selection was studied in a pure layer line. RESULTS: Genome reduction and sequencing fragments were identified on reference genome using four restriction enzymes (EcoRI, TaqI, AvaII and PstI) and a double-digest RADseq (ddRADseq) method (TaqI-PstI). The SNPs contained in these fragments were detected from the 20X sequence data of the individuals in our population. Imputation accuracy on HD chip with these genotypes was assessed as the mean correlation between true and imputed genotypes. Several production traits were evaluated using single-step GBLUP methodology. The impact of imputation errors on the ranking of the selection candidates was assessed by comparing a genomic evaluation based on ancestry using true HD or imputed HD genotyping. The relative accuracy of genomic estimated breeding values (GEBVs) was investigated by considering the GEBVs estimated on offspring as a reference. With AvaII or PstI and ddRADseq with TaqI and PstI, more than 10 K SNPs were detected in common with the HD SNP chip, resulting in an imputation accuracy greater than 0.97. The impact of imputation errors on genomic evaluation of the breeders was reduced, with a Spearman correlation greater than 0.99. Finally, the relative accuracy of GEBVs was equivalent. CONCLUSIONS: RADseq approaches can be interesting alternatives to low-density SNP chips for genomic selection. With more than 10 K SNPs in common with the SNPs of the HD SNP chip, good imputation and genomic evaluation results can be obtained. However, with real data, heterogeneity between individuals with missing data must be considered.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Genoma , Genómica/métodos , Genotipo , Análisis de Secuencia de ADN
2.
BMC Genet ; 21(1): 17, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046634

RESUMEN

BACKGROUND: Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of genomic evaluation in pure line layers. RESULTS: It was observed that genomic evaluation, whether performed on males or females, always proved more accurate than genetic evaluation. The gain was higher when phenotypic information was narrowed, and an augmentation of the size of the reference population led to an increase in accuracy prediction with regard to genomic evaluation. By taking into account the increase of selection intensity and the decrease of the generation interval induced by genomic selection, the expected annual genetic gain would be higher with ancestry-based genomic evaluation of male candidates than with genetic evaluation based on collaterals. This advantage of genomic selection over genetic selection requires more detailed further study for female candidates. CONCLUSIONS: In conclusion, in the population studied, the genomic evaluation of egg quality traits of breeding birds at birth seems to be a promising strategy, at least for the selection of males.


Asunto(s)
Huevos , Genoma , Genómica , Carácter Cuantitativo Heredable , Animales , Bovinos , Femenino , Estudios de Asociación Genética , Genómica/métodos , Genotipo , Masculino , Fenotipo
3.
BMC Genet ; 19(1): 108, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514201

RESUMEN

BACKGROUND: The main goal of selection is to achieve genetic gain for a population by choosing the best breeders among a set of selection candidates. Since 2013, the use of a high density genotyping chip (600K Affymetrix® Axiom® HD genotyping array) for chicken has enabled the implementation of genomic selection in layer and broiler breeding, but the genotyping costs remain high for a routine use on a large number of selection candidates. It has thus been deemed interesting to develop a low density genotyping chip that would induce lower costs. In this perspective, various simulation studies have been conducted to find the best way to select a set of SNPs for low density genotyping of two laying hen lines. RESULTS: To design low density SNP chips, two methodologies, based on equidistance (EQ) or on linkage disequilibrium (LD) were compared. Imputation accuracy was assessed as the mean correlation between true and imputed genotypes. The results showed correlations more sensitive to false imputation of SNPs having low Minor Allele Frequency (MAF) when the EQ methodology was used. An increase in imputation accuracy was obtained when SNP density was increased, either through an increase in the number of selected windows on a chromosome or through the rise of the LD threshold. Moreover, the results varied depending on the type of chromosome (macro or micro-chromosome). The LD methodology enabled to optimize the number of SNPs, by reducing the SNP density on macro-chromosomes and by increasing it on micro-chromosomes. Imputation accuracy also increased when the size of the reference population was increased. Conversely, imputation accuracy decreased when the degree of kinship between reference and candidate populations was reduced. Finally, adding selection candidates' dams in the reference population, in addition to their sire, enabled to get better imputation results. CONCLUSIONS: Whichever the SNP chip, the methodology, and the scenario studied, highly accurate imputations were obtained, with mean correlations higher than 0.83. The key point to achieve good imputation results is to take into account chicken lines' LD when designing a low density SNP chip, and to include the candidates' direct parents in the reference population.


Asunto(s)
Pollos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Animales , Pollos/crecimiento & desarrollo , Cromosomas , Frecuencia de los Genes , Genotipo , Desequilibrio de Ligamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA