Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 27(10): 1754-1762, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29528390

RESUMEN

Large expansions of hexanucleotide GGGGCC (G4C2) repeats (hundreds to thousands) in the first intron of the chromosome 9 open reading frame 72 (C9orf72) locus are the strongest known genetic factor associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Different hypotheses exist about the underlying disease mechanism including loss of function by haploinsufficiency, toxicity arising as a result of RNA or dipeptide repeats (DPRs). Five different DPRs are produced by repeat-associated non-ATG-initiated translation of the G4C2 repeats. Though earlier studies have indicated toxicity of the DPRs in worms, flies, primary cultured cells and cell lines, the effect of expressing DPRs of amyotrophic lateral sclerosis-relevant length has not been tested on motor behaviour in vertebrate models. In this study, by expressing constructs with alternate codons encoding different lengths of each DPR (40, 200 and 1000) in the vertebrate zebrafish model, the GR DPR was found to lead to the greatest developmental lethality and morphological defects, and GA, the least. However, expressing 1000 repeats of any DPR, including the 'non-toxic' GA DPR led to locomotor defects. Based on these observations, a transgenic line stably expressing 100 GR repeats was generated to allow specific regional and temporal expression of GR repeats in vivo. Expression of GR DPRs ubiquitously resulted in severe morphological defects and reduced swimming. However, when expressed specifically in motor neurons, the developmental defects were significantly reduced, but the swimming phenotype persisted, suggesting that GR DPRs have a toxic effect on motor neuron function. This was validated by the reduction in motor neuron length even in already formed motor neurons when GR was expressed in these. Hence, the expression of C9orf72-associated DPRs can cause significant motor deficits in vertebrates.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Degeneración Lobar Frontotemporal/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente/genética , Dipéptidos/genética , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/fisiopatología , Regulación de la Expresión Génica , Humanos , Locomoción/genética , Locomoción/fisiología , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Pez Cebra/genética
2.
Genome Res ; 27(1): 165-173, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003435

RESUMEN

Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies.


Asunto(s)
Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Investigación Biomédica , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Genotipo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
3.
J Neurol Neurosurg Psychiatry ; 91(12): 1304-1311, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33055142

RESUMEN

OBJECTIVE: The precise relationship between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is incompletely understood. The association has been described as a continuum, yet data suggest that this may be an oversimplification. Direct comparisons between patients who have behavioural variant FTD (bvFTD) with and without ALS are rare. This prospective comparative study aimed to determine whether there are phenotypic differences in cognition and behaviour between patients with FTD-ALS and bvFTD alone. METHODS: Patients with bvFTD or FTD-ALS and healthy controls underwent neuropsychological testing, focusing on language, executive functions and social cognition. Behavioural change was measured through caregiver interview. Blood samples were screened for known FTD genes. RESULTS: 23 bvFTD, 20 FTD-ALS and 30 controls participated. On cognitive tests, highly significant differences were elicited between patients and controls, confirming the tests' sensitivities to FTD. bvFTD and FTD-ALS groups performed similarly, although with slightly greater difficulty in patients with ALS-FTD on category fluency and a sentence-ordering task that assesses grammar production. Patients with bvFTD demonstrated more widespread behavioural change, with more frequent disinhibition, impulsivity, loss of empathy and repetitive behaviours. Behaviour in FTD-ALS was dominated by apathy. The C9ORF72 repeat expansion was associated with poorer performance on language-related tasks. CONCLUSIONS: Differences were elicited in cognition and behaviour between bvFTD and FTD-ALS, and patients carrying the C9ORF72 repeat expansion. The findings, which raise the possibility of phenotypic variation between bvFTD and FTD-ALS, have clinical implications for early detection of FTD-ALS and theoretical implications for the nature of the relationship between FTD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/psicología , Apatía , Proteína C9orf72/genética , Demencia Frontotemporal/psicología , Conducta Impulsiva , Inhibición Psicológica , Cognición Social , Anciano , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Estudios de Casos y Controles , Empatía , Función Ejecutiva , Femenino , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Genotipo , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fenotipo , Estudios Prospectivos , Conducta Estereotipada
4.
Neurochem Res ; 45(7): 1711-1728, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32361798

RESUMEN

Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further analyse the mRNA and protein cargo of neuronal EVs, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30-100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons.


Asunto(s)
Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Redes Reguladoras de Genes/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Transcripción Genética/fisiología , Humanos
5.
Brain ; 141(10): 2895-2907, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252044

RESUMEN

The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Regulación de la Expresión Génica/genética , Edad de Inicio , Anciano , Islas de CpG , Metilación de ADN , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
6.
Hum Mol Genet ; 25(23): 5069-5082, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798094

RESUMEN

C9orf72 expansions are the most common genetic cause of FTLD and MND identified to date. Although being intronic, the expansion is translated into five different dipeptide repeat proteins (DPRs) that accumulate within patients' neurons. Attempts have been made to model DPRs in cell and animals. However, the majority of these use DPRs repeat numbers much shorter than those observed in patients. To address this we have generated a selection of DPR expression constructs with repeat numbers in excess of 1000 repeats, matching what is seen in patients. Small and larger DPRs produce inclusions with similar morphology but different cellular effects. We demonstrate a length dependent effect using electrophysiology with a phenotype only occurring with the longest DPRs. These data highlight the importance of using physiologically relevant repeat numbers when modelling DPRs.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Dipéptidos/genética , Degeneración Lobar Frontotemporal/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Proteína C9orf72 , Expansión de las Repeticiones de ADN/genética , Dipéptidos/metabolismo , Fenómenos Electrofisiológicos , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/fisiopatología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Intrones/genética , Neuronas/metabolismo , Neuronas/patología , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Proteínas/metabolismo
7.
J Neurol Neurosurg Psychiatry ; 89(8): 813-816, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29332010

RESUMEN

BACKGROUND: Several studies suggest that multiple rare genetic variants in genes causing monogenic forms of neurodegenerative disorders interact synergistically to increase disease risk or reduce the age of onset, but these studies have not been validated in large sporadic case series. METHODS: We analysed 980 neuropathologically characterised human brains with Alzheimer's disease (AD), Parkinson's disease-dementia with Lewy bodies (PD-DLB), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) and age-matched controls. Genetic variants were assessed using the American College of Medical Genetics criteria for pathogenicity. Individuals with two or more variants within a relevant disease gene panel were defined as 'oligogenic'. RESULTS: The majority of oligogenic variant combinations consisted of a highly penetrant allele or known risk factor in combination with another rare but likely benign allele. The presence of oligogenic variants did not influence the age of onset or disease severity. After controlling for the single known major risk allele, the frequency of oligogenic variants was no different between cases and controls. CONCLUSIONS: A priori, individuals with AD, PD-DLB and FTD-ALS are more likely to harbour a known genetic risk factor, and it is the burden of these variants in combination with rare benign alleles that is likely to be responsible for some oligogenic associations. Controlling for this bias is essential in studies investigating a potential role for oligogenic variation in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Encéfalo/patología , Demencia Frontotemporal/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/patología , Femenino , Demencia Frontotemporal/patología , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología
8.
Hum Mol Genet ; 23(23): 6139-46, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973356

RESUMEN

Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.


Asunto(s)
Apolipoproteínas E/genética , Enfermedad por Cuerpos de Lewy/etiología , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/patología , Receptores Depuradores/genética , alfa-Sinucleína/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Humanos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , Masculino , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Factores de Riesgo
9.
Eur J Neurosci ; 44(5): 2214-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27307215

RESUMEN

Mutations in progranulin (PGRN) have been linked to two neurodegenerative disorders, heterozygote mutations with frontotemporal lobar degeneration (FTLD) and homozygote mutations with neuronal ceroid lipofuscinosis (NCL). Human PGRN is 593aa secreted growth factor, made up of seven and a half repeats of a highly conserved granulin motif that is cleaved to produce the granulin peptides A-G and paragranulin. While it is thought that PGRN protects against neurodegeneration through its role in inflammation and tissue repair, the role of PGRN and granulins in the nervous system is currently unclear. To better understand this, we prepared recombinant PGRN, granulin A-F and paragranulin, and used these to treat differentiated neuronal SH-SY5Y cells. Using RNA sequencing and bioinformatics techniques we investigated the functional effects of PGRN and the individual granulins upon the transcriptome. For PGRN treatment we show that the main effect of short-duration treatments is the down-regulation of transcripts, supporting that signalling pathway induction appears to be dominant effect. Gene ontology analysis, however, also supports the regulation of biological processes such as the spliceosome and proteasome in response to PGRN treatment, as well as the lysosomal pathway constituents such as CHMP1A, further supporting the role of PGRN in lysosomal function. We also show that the response to granulin treatments involves the regulation of numerous non-coding RNA's, and the granulins cluster into groups of similar activity on the basis of expression profile with paragranulin and PGRN having similar expression profiles, while granulins B, D, E and G appear more similar.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Transcriptoma , Línea Celular Tumoral , Regulación hacia Abajo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/farmacología , Progranulinas , Proteolisis , Empalme del ARN , ARN no Traducido/genética , ARN no Traducido/metabolismo
10.
Alzheimers Dement ; 12(8): 862-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26993346

RESUMEN

INTRODUCTION: The genetics underlying posterior cortical atrophy (PCA), typically a rare variant of Alzheimer's disease (AD), remain uncertain. METHODS: We genotyped 302 PCA patients from 11 centers, calculated risk at 24 loci for AD/DLB and performed an exploratory genome-wide association study. RESULTS: We confirm that variation in/near APOE/TOMM40 (P = 6 × 10(-14)) alters PCA risk, but with smaller effect than for typical AD (PCA: odds ratio [OR] = 2.03, typical AD: OR = 2.83, P = .0007). We found evidence for risk in/near CR1 (P = 7 × 10(-4)), ABCA7 (P = .02) and BIN1 (P = .04). ORs at variants near INPP5D and NME8 did not overlap between PCA and typical AD. Exploratory genome-wide association studies confirmed APOE and identified three novel loci: rs76854344 near CNTNAP5 (P = 8 × 10(-10) OR = 1.9 [1.5-2.3]); rs72907046 near FAM46A (P = 1 × 10(-9) OR = 3.2 [2.1-4.9]); and rs2525776 near SEMA3C (P = 1 × 10(-8), OR = 3.3 [2.1-5.1]). DISCUSSION: We provide evidence for genetic risk factors specifically related to PCA. We identify three candidate loci that, if replicated, may provide insights into selective vulnerability and phenotypic diversity in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/patología , Predisposición Genética a la Enfermedad/genética , Proteínas/genética , Semaforinas/genética , Factores de Edad , Anciano , Enfermedad de Alzheimer/complicaciones , Apolipoproteínas E/genética , Atrofia/etiología , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Polimorfismo de Nucleótido Simple/genética , Polinucleotido Adenililtransferasa , Receptores de Complemento 3b/genética , Factores de Riesgo
11.
Neuropathol Appl Neurobiol ; 41(5): 601-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25185840

RESUMEN

AIMS: Frontotemporal lobar degeneration (FTLD) and motor neurone disease are linked by the possession of a hexanucleotide repeat expansion in C9ORF72, and both show neuronal cytoplasmic inclusions within cerebellar and hippocampal neurones which are TDP-43 negative but immunoreactive for p62 and dipeptide repeat proteins (DPR), these being generated by a non-ATG RAN translation of the expanded region of the gene. METHODS: Twenty-two cases of FTLD from Newcastle were analysed for an expansion in C9ORF72 by repeat primed PCR and Southern blot. Detailed case note analysis was performed, and blinded retrospective clinical impressions were achieved by review of clinical histories. Sections from all major brain regions were immunostained for TDP-43, p62 and DPR. The extent of TDP-43 and DPR pathology in expansion bearers was compared with that in 13 other previously identified cases from the Manchester Brain Bank with established disease. RESULTS: Three Newcastle patients bearing an expansion in C9ORF72 were identified. These three patients died prematurely, two from bronchopneumonia within 10 months and 3 years of onset, and one from myocardial infarction 3 years after onset. In all three, DPR were plentiful throughout all cerebral cortical regions, hippocampus and cerebellum, but TDP-43 pathological changes were sparse. The severity of DPR pathological changes in these three patients was similar to that in the Manchester series, although the extent of TDP-43 pathology was significantly less. CONCLUSION: Widespread accumulation of DPR within nerve cells may occur much earlier than that of TDP-43 in patients with FTLD bearing expansion in C9ORF72.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Dipéptidos/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Proteínas/genética , Anciano , Encéfalo/patología , Proteína C9orf72 , Expansión de las Repeticiones de ADN , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología
12.
Neuropathol Appl Neurobiol ; 41(2): 245-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24861260

RESUMEN

AIMS: Frontotemporal lobar degeneration (FTLD) is clinically and pathologically heterogeneous. Although associated with variations in MAPT, GRN and C9ORF72, the pathogenesis of these, and of other nongenetic, forms of FTLD, remains unknown. Epigenetic factors such as histone regulation by histone deacetylases (HDAC) may play a role in the dysregulation of transcriptional activity, thought to underpin the neurodegenerative process. METHODS: The distribution and intensity of HDACs 4, 5 and 6 was assessed semi-quantitatively in immunostained sections of temporal cortex with hippocampus, and cerebellum, from 33 pathologically confirmed cases of FTLD and 27 controls. RESULTS: We found a significantly greater intensity of cytoplasmic immunostaining for HDAC4 and HDAC6 in granule cells of the dentate gyrus in cases of FTLD overall compared with controls, and specifically in cases of FTLD tau-Picks compared with FTLD tau-MAPT and controls. No differences were noted between FTLD-TDP subtypes, or between the different genetic and nongenetic forms of FTLD. No changes were seen in HDAC5 in any FTLD or control cases. CONCLUSIONS: Dysregulation of HDAC4 and/or HDAC6 could play a role in the pathogenesis of FTLD-tau associated with Pick bodies, although their lack of immunostaining implies that such changes do not contribute directly to the formation of Pick bodies.


Asunto(s)
Giro Dentado/patología , Degeneración Lobar Frontotemporal/enzimología , Degeneración Lobar Frontotemporal/patología , Histona Desacetilasas/biosíntesis , Proteínas Represoras/biosíntesis , Anciano , Femenino , Histona Desacetilasa 6 , Histona Desacetilasas/análisis , Historia del Siglo XVI , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Proteínas Represoras/análisis
13.
Acta Neuropathol ; 130(1): 63-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25943887

RESUMEN

GGGGCC repeat expansions of C9ORF72 represent the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We and others have proposed that RNA transcribed from the repeat sequence is toxic via sequestration of RNA-binding factors. Both GGGGCC-repeat (sense) and CCCCGG-repeat (antisense) molecules are detectable by fluorescence in situ hybridisation as RNA foci, but their relative expression pattern within the CNS and contribution to disease has not been determined. Blinded examination of CNS biosamples from ALS patients with a repeat expansion of C9ORF72 showed that antisense foci are present at a significantly higher frequency in cerebellar Purkinje neurons and motor neurons, whereas sense foci are present at a significantly higher frequency in cerebellar granule neurons. Consistent with this, inclusions containing sense or antisense derived dipeptide repeat proteins were present at significantly higher frequency in cerebellar granule neurons or motor neurons, respectively. Immunohistochemistry and UV-crosslinking studies showed that sense and antisense RNA molecules share similar interactions with SRSF2, hnRNP K, hnRNP A1, ALYREF, and hnRNP H/F. Together these data suggest that, although sense and antisense RNA molecules might be expected to be equally toxic via their shared protein binding partners, distinct patterns of expression in various CNS neuronal populations could lead to relative differences in their contribution to the pathogenesis of neuronal injury. Moreover in motor neurons, which are the primary target of pathology in ALS, the presence of antisense foci (χ (2), p < 0.00001) but not sense foci (χ (2), p = 0.75) correlated with mislocalisation of TDP-43, which is the hallmark of ALS neurodegeneration. This has implications for translational approaches to C9ORF72 disease, and furthermore interacting RNA-processing factors and transcriptional activators responsible for antisense versus sense transcription might represent novel therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas Motoras/metabolismo , Proteínas/genética , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Cerebelo/metabolismo , Cerebelo/patología , Expansión de las Repeticiones de ADN , Femenino , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN sin Sentido
14.
Neuropathol Appl Neurobiol ; 40(7): 844-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24861427

RESUMEN

INTRODUCTION: Frontotemporal lobar degeneration (FTLD) is classified mainly into FTLD-tau and FTLD-TDP according to the protein present within inclusion bodies. While such a classification implies only a single type of protein should be present, recent studies have demonstrated dual tau and TDP-43 proteinopathy can occur, particularly in inherited FTLD. METHODS: We therefore investigated 33 patients with FTLD-tau (including 9 with MAPT mutation) for TDP-43 pathological changes, and 45 patients with FTLD-TDP (including 12 with hexanucleotide expansion in C9ORF72 and 12 with GRN mutation), and 23 patients with motor neurone disease (3 with hexanucleotide expansion in C9ORF72), for tauopathy. RESULTS: TDP-43 pathological changes, of the kind seen in many elderly individuals with Alzheimer's disease, were seen in only two FTLD-tau cases--a 70-year-old male with exon 10 + 13 mutation in MAPT, and a 73-year-old female with corticobasal degeneration. Such changes were considered to be secondary and probably reflective of advanced age. Conversely, there was generally only scant tau pathology, usually only within hippocampus and/or entorhinal cortex, in most patients with FTLD-TDP or MND. The extent of tau pathology in FTLD-TDP and MND, as with amyloid ß protein, may relate to increased age and possession of Apolipoprotein ε4 allele. CONCLUSION: We find no predilection or predisposition towards an accompanying TDP-43 pathology in patients with FTLD-tau, irrespective of presence or absence of MAPT mutation, or that genetic changes associated with FTLD-TDP predispose towards excessive tauopathy. Where the two processes coexist, this is limited and probably causatively independent of each other.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/genética , Enfermedad de la Neurona Motora/genética , Proteínas tau/genética , Anciano , Anciano de 80 o más Años , Proteína C9orf72 , Femenino , Humanos , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Persona de Mediana Edad , Progranulinas , Proteínas/genética
15.
Neuropathol Appl Neurobiol ; 40(6): 686-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24117616

RESUMEN

AIMS: Pathological heterogeneity within patients with frontotemporal lobar degeneration (FTLD) in general precludes the accurate assignment of diagnostic subtype in life. The aim of this study was to assess the extent of microglial cell activation in FTLD in order to determine whether it might be possible to employ this as a diagnostic marker in vivo using PET ligand [11C](R)-PK11195 in order to differentiate cases of FTLD according to histological subtype. METHODS: The distribution and extent of microglial cell activation was assessed semi-quantitatively in cortical grey and subcortical white matter of CD68 immunostained sections of frontal and temporal cortex from 78 pathologically confirmed cases of FTLD, 13 of Alzheimer's disease (AD) and 13 controls. RESULTS: Significantly higher levels of microglial cell activation than controls occurred in all four regions in FTLD, and in three of the four regions in AD. Microglial activation was greater in frontal subcortical white matter in FTLD than AD, whereas it was higher in temporal cortical grey matter in AD than FTLD. Microglial cell activation was significantly higher in temporal subcortical white matter in FTLD-MAPT than in other genetic (GRN, C9ORF72) or non-genetic forms of FTLD. CONCLUSIONS: The present study suggests that high levels of microglial cell involvement in temporal lobe (subcortical white matter) might serve as a marker of inherited FTLD associated with intronic mutations in MAPT, with a relatively intense signal in this region in PET studies using [11C](R)-PK11195 as microglial cell marker could indicate the presence of MAPT mutation in vivo.


Asunto(s)
Encéfalo/patología , Degeneración Lobar Frontotemporal/patología , Microglía/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Biomarcadores , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología
16.
Mov Disord ; 29(2): 245-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24227479

RESUMEN

Dystonia is a common movement disorder. A number of monogenic causes have been identified. However, the majority of dystonia cases are not explained by single gene defects. Cervical dystonia is one of the commonest forms without genetic causes identified. This pilot study aimed to identify large effect-size risk loci in cervical dystonia. A genomewide association study (GWAS) was performed. British resident cervical dystonia patients of European descent were genotyped using the Illumina-610-Quad. Comparison was made with controls of European descent from the Wellcome Trust Case Control Consortium using logistic regression algorithm from PLINK. SNPs not genotyped by the array were imputed with 1000 Genomes Project data using the MaCH algorithm and minimac. Postimputation analysis was done with the mach2dat algorithm using a logistic regression model. After quality control measures, 212 cases were compared with 5173 controls. No single SNP passed the genomewide significant level of 5 × 10(-8) in the analysis of genotyped SNP in PLINK. Postimputation, there were 5 clusters of SNPs that had P value <5 × 10(-6) , and the best cluster of SNPs was found near exon 1 of NALCN, (sodium leak channel) with P = 9.76 × 10(-7) . Several potential regions were found in the GWAS and imputation analysis. The lowest P value was found in NALCN. Dysfunction of this ion channel is a plausible cause for dystonia. Further replication in another cohort is needed to confirm this finding. We make this data publicly available to encourage further analyses of this disorder.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Canales de Sodio/genética , Tortícolis/genética , Anciano , Inglaterra , Exones/genética , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Canales Iónicos , Masculino , Proteínas de la Membrana , Persona de Mediana Edad
17.
Brain ; 135(Pt 3): 693-708, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22300873

RESUMEN

The identification of a hexanucleotide repeat expansion in the C9ORF72 gene as the cause of chromosome 9-linked frontotemporal dementia and motor neuron disease offers the opportunity for greater understanding of the relationship between these disorders and other clinical forms of frontotemporal lobar degeneration. In this study, we screened a cohort of 398 patients with frontotemporal dementia, progressive non-fluent aphasia, semantic dementia or mixture of these syndromes for mutations in the C9ORF72 gene. Motor neuron disease was present in 55 patients (14%). We identified 32 patients with C9ORF72 mutations, representing 8% of the cohort. The patients' clinical phenotype at presentation varied: nine patients had frontotemporal dementia with motor neuron disease, 19 had frontotemporal dementia alone, one had mixed semantic dementia with frontal features and three had progressive non-fluent aphasia. There was, as expected, a significant association between C9ORF72 mutations and presence of motor neuron disease. Nevertheless, 46 patients, including 22 familial, had motor neuron disease but no mutation in C9ORF72. Thirty-eight per cent of the patients with C9ORF72 mutations presented with psychosis, with a further 28% exhibiting paranoid, deluded or irrational thinking, whereas <4% of non-mutation bearers presented similarly. The presence of psychosis dramatically increased the odds that patients carried the mutation. Mutation bearers showed a low incidence of motor stereotypies, and relatively high incidence of complex repetitive behaviours, largely linked to patients' delusions. They also showed a lower incidence of acquired sweet food preference than patients without C9ORF72 mutations. Post-mortem pathology in five patients revealed transactive response DNA-binding protein 43 pathology, type A in one patient and type B in three. However, one patient had corticobasal degeneration pathology. The findings indicate that C9ORF72 mutations cause some but not all cases of frontotemporal dementia with motor neuron disease. Other mutations remain to be discovered. C9ORF72 mutations are associated with variable clinical presentations and pathology. Nevertheless, the findings highlight a powerful association between C9ORF72 mutations and psychosis and suggest that the behavioural characteristics of patients with C9ORF72 mutations are qualitatively distinct. Mutations in the C9ORF72 gene may be a major cause not only of frontotemporal dementia with motor neuron disease but also of late onset psychosis.


Asunto(s)
Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Proteínas/genética , Adulto , Edad de Inicio , Anciano , Autopsia , Conducta/fisiología , Encéfalo/patología , Proteína C9orf72 , Cerebelo/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Estudios de Cohortes , ADN/genética , Proteínas de Unión al ADN/genética , Demografía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Bulbo Raquídeo/patología , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Mutación/genética , Pruebas Neuropsicológicas , Trastornos Psicóticos/etiología , Trastornos Psicóticos/psicología , Médula Espinal/patología
18.
Nature ; 442(7105): 916-9, 2006 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-16862116

RESUMEN

Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35-50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787-D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt-Jakob disease, motor neuron disease and Alzheimer's disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.


Asunto(s)
Cromosomas Humanos Par 17/genética , Demencia/genética , Lóbulo Frontal/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación/genética , Precursores de Proteínas/genética , Lóbulo Temporal/fisiopatología , Supervivencia Celular , Codón de Terminación/genética , Demencia/fisiopatología , Lóbulo Frontal/metabolismo , Ligamiento Genético/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas/metabolismo , Neuronas/patología , Mapeo Físico de Cromosoma , Progranulinas , Precursores de Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Lóbulo Temporal/metabolismo , Proteínas tau/deficiencia , Proteínas tau/genética
19.
Sci Rep ; 12(1): 4799, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314728

RESUMEN

A repeat expansion in C9orf72 is the major cause of both frontotemporal dementia and amyotrophic lateral sclerosis, accounting for approximately 1 in 12 cases of either disease. The expansion is translated to produce five dipeptide repeat proteins (DPRs) which aggregate in patient brain and are toxic in numerous models, though the mechanisms underlying this toxicity are poorly understood. Recent studies highlight nucleocytoplasmic transport impairments as a potential mechanism underlying neurodegeneration in C9orf72-linked disease, although the contribution of DPRs to this remains unclear. We expressed DPRs in HeLa cells, in the absence of repeat RNA. Crucially, we expressed DPRs at repeat-lengths found in patients (> 1000 units), ensuring our findings were relevant to disease. Immunofluorescence imaging was used to investigate the impact of each DPR on the nucleus, nucleocytoplasmic transport machinery and TDP-43 localisation. DPRs impaired the structural integrity of the nucleus, causing nuclear membrane disruption and misshapen nuclei. Ran and RanGAP, two proteins required for nucleocytoplasmic transport, were also mislocalised in DPR-expressing cells. Furthermore, DPRs triggered mislocalisation of TDP-43 to the cytoplasm, and this occurred in the same cells as Ran and RanGAP mislocalisation, suggesting a potential link between DPRs, nucleocytoplasmic transport impairments and TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Citoplasma/metabolismo , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/patología , Células HeLa , Humanos
20.
Acta Neuropathol ; 121(3): 365-71, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20978901

RESUMEN

Frontotemporal lobar degeneration (FTLD) is generally recognised as a disorder with presenile onset (that is before 65 years of age) with only occasional cases presenting later than this. We set out to determine what proportion of cases of FTLD had late onset of disease and whether such cases of FTLD had distinctive clinical and neuropathological features as compared to cases with presenile onset. Within a combined Manchester and Newcastle autopsy series of 117 cases with pathologically confirmed FTLD (109/117 cases also met Lund Manchester clinical criteria for FTLD), we identified 30 cases (onset age range 65-86 years), comprising 25% of all FTLD cases ascertained in these two centres over a 25-year period. Neuropathologically, the 30 elderly cases presented features of several FTLD histological subgroups [FTLD-TDP (types 1, 2 and 3, 19 cases (63%)], FLTD-tau [MAPT, PiD and CBD, 10 cases (33%)] and FTLD-UPS (1 case), similar in range of phenotypes to that seen in the presenile group, though patients with MAPT, but not PGRN, mutation, or FUS pathology, were notably absent or fewer in the elderly group. Hippocampal sclerosis (HS) was present in 13/30 of the elderly FTLD cases (43%) compared with 14/79 (18%) (P = 0.012) in the presenile FTLD patients. Lobar atrophy present in most of the younger patients was prominent in only 25% of the elderly subjects. Prospective and retrospective psychiatric and medical case note analysis showed that the majority of the elderly FTLD patients, like their younger counterparts, had behavioural features consistent with frontotemporal dementia. FTLD is common amongst elderly persons and all or most of the major clinical and histological subtypes present in younger individuals can be seen in the older group.


Asunto(s)
Envejecimiento/patología , Degeneración Lobar Frontotemporal/epidemiología , Degeneración Lobar Frontotemporal/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Circulación Cerebrovascular/fisiología , Femenino , Degeneración Lobar Frontotemporal/fisiopatología , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA