Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735476

RESUMEN

Bacterial microcompartments are prokaryotic organelles comprising encapsulated enzymes within a thin protein shell. They facilitate metabolic processing including propanediol, choline, glycerol, and ethanolamine utilization, and they accelerate carbon fixation in cyanobacteria. Enzymes targeted to the inside of the microcompartment frequently possess a cargo-encapsulation peptide, but the site to which the peptide binds is unclear. We provide evidence that the encapsulation peptides bind to the hydrophobic groove formed between tessellating subunits of the shell proteins. In silico docking studies provide a compelling model of peptide binding to this prominent hydrophobic groove. This result is consistent with the now widely accepted view that the convex side of the shell oligomers faces the lumen of the microcompartment. The binding of the encapsulation peptide to the groove between tessellating shell protein tiles explains why it has been difficult to define the peptide binding site using other methods, provides a mechanism by which encapsulation-peptide bearing enzymes can promote shell assembly, and explains how the presence of cargo affects the size and shape of the bacterial microcompartment. This knowledge may be exploited in engineering microcompartments or disease prevention by hampering cargo encapsulation.


Asunto(s)
Proteínas Bacterianas , Péptidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Péptidos/metabolismo , Péptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Sitios de Unión , Orgánulos/metabolismo , Simulación del Acoplamiento Molecular
2.
Small ; 14(19): e1704020, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29573556

RESUMEN

Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes.


Asunto(s)
Proteínas Bacterianas/química , Nanotubos/química , Escherichia coli/metabolismo , Modelos Moleculares , Nanotubos/ultraestructura
3.
Biochim Biophys Acta Gen Subj ; 1862(9): 1948-1955, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29908816

RESUMEN

Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria.


Asunto(s)
Hidroximetilbilano Sintasa/química , Hidroximetilbilano Sintasa/metabolismo , Pirroles/química , Pirroles/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Polimerizacion , Porfobilinógeno/química , Porfobilinógeno/metabolismo , Conformación Proteica , Uroporfirinógenos/química , Uroporfirinógenos/metabolismo
4.
Biochim Biophys Acta Proteins Proteom ; 1865(10): 1255-1266, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28733198

RESUMEN

Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.


Asunto(s)
Proteínas/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Biopelículas , Humanos , Transporte de Proteínas/fisiología
5.
J Biol Chem ; 289(32): 22377-84, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24873823

RESUMEN

Bacterial microcompartments are large proteinaceous assemblies that are found in the cytoplasm of some bacteria. These structures consist of proteins constituting a shell that houses a number of enzymes involved in specific metabolic processes. The 1,2-propanediol-utilizing microcompartment is assembled from seven different types of shell proteins, one of which is PduA. It is one of the more abundant components of the shell and intriguingly can form nanotubule-like structures when expressed on its own in the cytoplasm of Escherichia coli. We propose a model that accounts for the size and appearance of these PduA structures and underpin our model using a combinatorial approach. Making strategic mutations at Lys-26, Val-51, and Arg-79, we targeted residues predicted to be important for PduA assembly. We present the effect of the amino acid residue substitution on the phenotype of the PduA higher order assemblies (transmission electron microscopy) and the crystal structure of the K26D mutant with one glycerol molecule bound to the central pore. Our results support the view that the hexamer-hexamer interactions seen in PduA crystals persist in the cytoplasmic structures and reveal the profound influence of the two key amino acids, Lys-26 and Arg-79, on tiling, not only in the crystal lattice but also in the bacterial cytoplasm. Understanding and controlling PduA assemblies is valuable in order to inform manipulation for synthetic biology and biotechnological applications.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Citrobacter freundii/genética , Citrobacter freundii/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Cuerpos de Inclusión/química , Cuerpos de Inclusión/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática
6.
Mol Microbiol ; 93(2): 247-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24865947

RESUMEN

Some bacteria and archaea synthesize haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side-chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem respectively. The characterization of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallized and its structure has been elucidated. The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/metabolismo , Desulfovibrio desulfuricans/enzimología , Desulfovibrio vulgaris/enzimología , Hemo/análogos & derivados , Hemo/biosíntesis , Methanosarcina barkeri/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Dominio Catalítico , Desulfovibrio desulfuricans/genética , Desulfovibrio vulgaris/genética , Hemo/aislamiento & purificación , Hemo/metabolismo , Cinética , Methanosarcina barkeri/genética , Oxidación-Reducción , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química
8.
PLoS Pathog ; 8(2): e1002531, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346756

RESUMEN

Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four α-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four α-helix bundles. The architecture can be described as the insertion of one α-helical hairpin into a second open α-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Enterobacteriaceae/metabolismo , Secretina/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Cristalización , Enterobacteriaceae/química , Enterobacteriaceae/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secretina/química , Análisis de Secuencia de ADN
9.
Nat Chem Biol ; 8(11): 933-40, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23042036

RESUMEN

The biosynthesis of many vitamins and coenzymes has often proven difficult to elucidate owing to a combination of low abundance and kinetic lability of the pathway intermediates. Through a serial reconstruction of the cobalamin (vitamin B(12)) pathway in Escherichia coli and by His tagging the terminal enzyme in the reaction sequence, we have observed that many unstable intermediates can be isolated as tightly bound enzyme-product complexes. Together, these approaches have been used to extract intermediates between precorrin-4 and hydrogenobyrinic acid in their free acid form and permitted the delineation of the overall reaction catalyzed by CobL, including the formal elucidation of precorrin-7 as a metabolite. Furthermore, a substrate-carrier protein, CobE, that can also be used to stabilize some of the transient metabolic intermediates and enhance their onward transformation, has been identified. The tight association of pathway intermediates with enzymes provides evidence for a form of metabolite channeling.


Asunto(s)
Metiltransferasas/metabolismo , Vitamina B 12/biosíntesis , Biocatálisis , Escherichia coli/enzimología , Escherichia coli/metabolismo , Metiltransferasas/química , Modelos Moleculares , Estructura Molecular , Uroporfirinas/química , Uroporfirinas/aislamiento & purificación , Uroporfirinas/metabolismo , Vitamina B 12/química , Vitamina B 12/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(1): 97-102, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173279

RESUMEN

The class II chelatases associated with heme, siroheme, and cobalamin biosynthesis are structurally related enzymes that insert a specific metal ion (Fe(2+) or Co(2+)) into the center of a modified tetrapyrrole (protoporphyrin or sirohydrochlorin). The structures of two related class II enzymes, CbiX(S) from Archaeoglobus fulgidus and CbiK from Salmonella enterica, that are responsible for the insertion of cobalt along the cobalamin biosynthesis pathway are presented in complex with their metallated product. A further structure of a CbiK from Desulfovibrio vulgaris Hildenborough reveals how cobalt is bound at the active site. The crystal structures show that the binding of sirohydrochlorin is distinctly different to porphyrin binding in the protoporphyrin ferrochelatases and provide a molecular overview of the mechanism of chelation. The structures also give insights into the evolution of chelatase form and function. Finally, the structure of a periplasmic form of Desulfovibrio vulgaris Hildenborough CbiK reveals a novel tetrameric arrangement of its subunits that are stabilized by the presence of a heme b cofactor. Whereas retaining colbaltochelatase activity, this protein has acquired a central cavity with the potential to chaperone or transport metals across the periplasmic space, thereby evolving a new use for an ancient protein subunit.


Asunto(s)
Cobalto/metabolismo , Evolución Molecular , Ferroquelatasa/metabolismo , Modelos Moleculares , Familia de Multigenes/genética , Vitamina B 12/biosíntesis , Archaeoglobus fulgidus/enzimología , Dominio Catalítico/genética , Cristalización , Desulfovibrio vulgaris/enzimología , Ferroquelatasa/genética , Porfirinas/metabolismo , Salmonella enterica/enzimología , Uroporfirinas/metabolismo
11.
J Biol Chem ; 287(12): 9072-80, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22253442

RESUMEN

The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a ß-sandwich-like fold consisting of two ß-sheets each composed of three anti-parallel ß-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Enterobacteriaceae/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Enterobacteriaceae/química , Enterobacteriaceae/genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
J Biol Chem ; 287(23): 19082-93, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22523076

RESUMEN

The type II secretion system (T2SS) secretes enzymes and toxins across the outer membrane of Gram-negative bacteria. The precise assembly of T2SS, which consists of at least 12 core-components called Gsp, remains unclear. The outer membrane secretin, GspD, forms the channels, through which folded proteins are secreted, and interacts with the inner membrane component, GspC. The periplasmic regions of GspC and GspD consist of several structural domains, HR(GspC) and PDZ(GspC), and N0(GspD) to N3(GspD), respectively, and recent structural and functional studies have proposed several interaction sites between these domains. We used cysteine mutagenesis and disulfide bonding analysis to investigate the organization of GspC and GspD protomers and to map their interaction sites within the secretion machinery of the plant pathogen Dickeya dadantii. At least three distinct GspC-GspD interactions were detected, and they involve two sites in HR(GspC), two in N0(GspD), and one in N2(GspD). None of these interactions occurs through static interfaces because the same sites are also involved in self-interactions with equivalent neighboring domains. Disulfide self-bonding of critical interaction sites halts secretion, indicating the transient nature of these interactions. The secretion substrate diminishes certain interactions and provokes an important rearrangement of the HR(GspC) structure. The T2SS components OutE/L/M affect various interaction sites differently, reinforcing some but diminishing the others, suggesting a possible switching mechanism of these interactions during secretion. Disulfide mapping shows that the organization of GspD and GspC subunits within the T2SS could be compatible with a hexamer of dimers arrangement rather than an organization with 12-fold rotational symmetry.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Dickeya chrysanthemi/metabolismo , Disulfuros/metabolismo , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/genética , Cisteína/genética , Cisteína/metabolismo , Dickeya chrysanthemi/genética , Proteínas de la Membrana/genética , Mutagénesis , Mapeo Peptídico/métodos , Estructura Terciaria de Proteína
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1381-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23897461

RESUMEN

The secretins are a family of large multimeric channels in the outer membrane of Gram-negative bacteria that are involved in protein export. In Dickeya dadantii and many other pathogenic bacteria, the lipoprotein pilotin targets the secretin subunits to the outer membrane, allowing a functional type II secretion system to be assembled. Here, the crystal structure of the C-terminal peptide of the secretin subunit bound to its cognate pilotin is reported. In solution, this C-terminal region of the secretin is nonstructured. The secretin peptide folds on binding to the pilotin to form just under four turns of α-helix which bind tightly up against the first helix of the pilotin so that the hydrophobic residues of the secretin helix can bind to the hydrophobic surface of the pilotin. The secretin helix binds parallel to the first part of the fourth helix of the pilotin. An N-capping aspartate encourages helix formation and binding by interacting favourably with the helix dipole of the helical secretin peptide. The structure of the secretin-pilotin complex of the phytopathogenic D. dadantii described here is a paradigm for this interaction in the OutS-PulS family of pilotins, which is essential for the correct assembly of the type II secretion system of several potent human adversaries, including enterohaemorrhagic Escherichia coli and Klebsiella oxytoca.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Enterobacteriaceae/metabolismo , Proteínas Ligadas a Lípidos/química , Proteínas Ligadas a Lípidos/metabolismo , Secretina/química , Secretina/metabolismo , Secuencia de Aminoácidos , Sistemas de Secreción Bacterianos/fisiología , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Enterobacteriaceae/patogenicidad , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína
14.
Biochem Biophys Res Commun ; 440(2): 235-40, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24045011

RESUMEN

Small inorganic assemblies of alternating ferrous/ferric iron and sulphide ions, so-called iron-sulphur (Fe-S) clusters, are possibly nature's most ancient prosthetic groups. One of the early actors in Fe-S cluster biosynthesis is a protein complex composed of a cysteine desulphurase, Nfs1, and its functional binding partner, Isd11. Although the essential function of Nfs1·Isd11 in the liberation of elemental sulphur from free cysteine is well established, little is known about its structure. Here, we provide evidence that shows Isd11 has a profound effect on the oligomeric state of Nfs1.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Estructura Cuaternaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfurtransferasas/química , Dicroismo Circular , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta , Homología Estructural de Proteína
15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 12): 1642-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23151629

RESUMEN

Lactobacillus reuteri metabolizes two similar three-carbon molecules, 1,2-propanediol and glycerol, within closed polyhedral subcellular bacterial organelles called bacterial microcompartments (metabolosomes). The outer shell of the propanediol-utilization (Pdu) metabolosome is composed of hundreds of mainly hexagonal protein complexes made from six types of protein subunits that share similar domain structures. The structure of the bacterial microcompartment protein PduB has a tandem structural repeat within the subunit and assembles into a trimer with pseudo-hexagonal symmetry. This trimeric structure forms sheets in the crystal lattice and is able to fit within a polymeric sheet of the major shell component PduA to assemble a facet of the polyhedron. There are three pores within the trimer and these are formed between the tandem repeats within the subunits. The structure shows that each of these pores contains three glycerol molecules that interact with conserved residues, strongly suggesting that these subunit pores channel glycerol substrate into the metabolosome. In addition to the observation of glycerol occupying the subunit channels, the presence of glycerol on the molecular threefold symmetry axis suggests a role in locking closed the central region.


Asunto(s)
Proteínas Bacterianas/química , Biopolímeros/química , Limosilactobacillus reuteri/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalización , Glicerol/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
16.
mBio ; 13(3): e0025322, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35546537

RESUMEN

The phytopathogenic proteobacterium Dickeya dadantii secretes an array of plant cell wall-degrading enzymes and other virulence factors via the type 2 secretion system (T2SS). T2SSs are widespread among important plant, animal, and human bacterial pathogens. This multiprotein complex spans the double membrane cell envelope and secretes fully folded proteins through a large outer membrane pore formed by 15 subunits of the secretin GspD. Secretins are also found in the type 3 secretion system and the type 4 pili. Usually, specialized lipoproteins termed pilotins assist the targeting and assembly of secretins into the outer membrane. Here, we show that in D. dadantii, the pilotin acts in concert with the scaffolding protein GspB. Deletion of gspB profoundly impacts secretin assembly, pectinase secretion, and virulence. Structural studies reveal that GspB possesses a conserved periplasmic homology region domain that interacts directly with the N-terminal secretin domain. Site-specific photo-cross-linking unravels molecular details of the GspB-GspD complex in vivo. We show that GspB facilitates outer membrane targeting and assembly of the secretin pores and anchors them to the inner membrane while the C-terminal extension of GspB provides a scaffold for the secretin channel in the peptidoglycan cell wall. Phylogenetic analysis shows that in other bacteria, GspB homologs vary in length and domain composition and act in concert with either a cognate ATPase GspA or the pilotin GspS. IMPORTANCE Gram-negative bacteria have two cell membranes sandwiching a peptidoglycan net that together form a robust protective cell envelope. To translocate effector proteins across this multilayer envelope, bacteria have evolved several specialized secretion systems. In the type 2 secretion system and some other bacterial machineries, secretins form large multimeric pores that allow transport of effector proteins or filaments across the outer membrane. The secretins are essential for nutrient acquisition and pathogenicity and constitute a target for development of new antibacterials. Targeting of secretin subunits into the outer membrane is often facilitated by a special class of lipoproteins called pilotins. Here, we show that in D. dadantii and some other bacteria, the scaffolding protein GspB acts in concert with pilotin, facilitating the assembly of the secretin pore and its anchoring to both the inner membrane and the bacterial cell wall. GspB homologs of varied domain composition are present in many other T2SSs.


Asunto(s)
Sistemas de Secreción Tipo II , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Dickeya , Enterobacteriaceae/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Filogenia , Secretina/genética , Secretina/metabolismo , Sistemas de Secreción Tipo II/metabolismo
17.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 91-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21245529

RESUMEN

Propanediol metabolism in Citrobacter freundii occurs within a metabolosome, a subcellular proteinaceous bacterial microcompartment. The propanediol-utilization (Pdu) microcompartment shell is constructed from thousands of hexagonal-shaped protein complexes made from seven different types of protein subunit. Here, the structure of the bacterial microcompartment protein PduT, which has a tandem structural repeat within the subunit and forms trimers with pseudo-hexagonal symmetry, is reported. This trimeric assembly forms a flat approximately hexagonally shaped disc with a central pore that is suitable for a 4Fe-4S cluster. The essentially cubic shaped 4Fe-4S cluster conforms to the threefold symmetry of the trimer with one free iron, the role of which could be to supply electrons to an associated microcompartment enzyme, PduS.


Asunto(s)
Proteínas Bacterianas/química , Citrobacter freundii/química , Hierro/química , Azufre/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citrobacter freundii/metabolismo , Cristalografía por Rayos X , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Azufre/metabolismo
18.
Mol Microbiol ; 76(4): 944-55, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20444086

RESUMEN

The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20-residue peptide named OutCsip (secretin interacting peptide, residues 139-158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2-N3' subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Dickeya chrysanthemi/metabolismo , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Péptidos/genética , Péptidos/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas
19.
Biochemistry ; 49(3): 539-46, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20000851

RESUMEN

Pectate lyases harness anti beta-elimination chemistry to cleave the alpha-1,4 linkage in the homogalacturonan region of plant cell wall pectin. We have studied the binding of five pectic oligosaccharides to Bacillus subtilis pectate lyase in crystals of the inactive enzyme in which the catalytic base is substituted with alanine (R279A). We discover that the three central subsites (-1, +1, and +2) have a profound preference for galacturonate but that the distal subsites can accommodate methylated galacturonate. It is reasonable to assume therefore that pectate lyase can cleave pectin with three consecutive galacturonate residues. The enzyme in the absence of substrate binds a single calcium ion, and we show that two additional calcium ions bind between enzyme and substrate carboxylates occupying the +1 subsite in the Michaelis complex. The substrate binds less intimately to the enzyme in a complex made with a catalytic base in place but in the absence of the calcium ions and an adjacent lysine. In this complex, the catalytic base is correctly positioned to abstract the C5 proton, but there are no calcium ions binding the carboxylate at the +1 subsite. It is clear, therefore, that the catalytic calcium ions and adjacent lysine promote catalysis by acidifying the alpha-proton, facilitating its abstraction by the base. There is also clear evidence that binding distorts the relaxed 2(1) or 3(1) helical conformation of the oligosaccharides in the region of the scissile bond.


Asunto(s)
Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Modelos Moleculares , Oligosacáridos/química , Oligosacáridos/metabolismo , Pectinas/metabolismo , Conformación Proteica , Especificidad por Sustrato
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1652-6, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21139217

RESUMEN

Of the 30 biosynthetic steps necessary for the production of cobalamin (vitamin B12), eight involve the addition of S-adenosylmethionine-derived methyl groups to the tetrapyrrole framework. These eight methyl additions are catalysed by six canonical methyltransferase domains and one noncanonical methyltransferase domain. Recombinant forms of four methyltransferases from Rhodobacter capsulatus, CobJ, CobM, CobF and CobL, and of the C-terminal noncanonical domain of CobL (CobL-C) have been crystallized, some in more than one crystal form. Most of the crystals diffracted to beyond 2.5 Šresolution and all are suitable for structure determination. Crystals of CobM and CobJ, which are involved in ring contraction, and of CobL, which is involved in two methylations and decarboxylation, are reported for the first time.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/aislamiento & purificación , Rhodobacter capsulatus/enzimología , Vitamina B 12/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Vitamina B 12/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA