Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Gut ; 73(1): 92-104, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37595983

RESUMEN

OBJECTIVE: Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN: EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS: Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS: Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.


Asunto(s)
Esclerosis Múltiple , Humanos , Animales , Ratones , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química , Triticum/química , Amilasas , Leucocitos Mononucleares , Ratones Endogámicos C57BL , Inflamación , Sistema Nervioso Central , Glútenes , Dieta
2.
Brain ; 144(4): 1152-1166, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899089

RESUMEN

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Asunto(s)
Suplementos Dietéticos , Enteritis/patología , Ácidos Linoleicos Conjugados/farmacología , Monocitos/inmunología , Esclerosis Múltiple Recurrente-Remitente/patología , Adulto , Animales , Autoinmunidad/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Enteritis/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Esclerosis Múltiple Recurrente-Remitente/inmunología , Proyectos Piloto , Prueba de Estudio Conceptual
3.
Int J Cancer ; 149(9): 1670-1682, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34331774

RESUMEN

Accumulating evidence suggests that both the nature of oncogenic lesions and the cell-of-origin can strongly influence cancer histopathology, tumor aggressiveness and response to therapy. Although oncogenic Kras expression and loss of Trp53 tumor suppressor gene function have been demonstrated to initiate murine lung adenocarcinomas (LUADs) in alveolar type II (AT2) cells, clear evidence that Club cells, representing the second major subset of lung epithelial cells, can also act as cells-of-origin for LUAD is lacking. Equally, the exact anatomic location of Club cells that are susceptible to Kras transformation and the resulting tumor histotype remains to be established. Here, we provide definitive evidence for Club cells as progenitors for LUAD. Using in vivo lineage tracing, we find that a subset of Kras12V -expressing and Trp53-deficient Club cells act as precursors for LUAD and we define the stepwise trajectory of Club cell-initiated tumors leading to lineage marker conversion and aggressive LUAD. Our results establish Club cells as cells-of-origin for LUAD and demonstrate that Club cell-initiated tumors have the potential to develop aggressive LUAD.


Asunto(s)
Adenocarcinoma/genética , Transformación Celular Neoplásica/genética , Células Epiteliales/metabolismo , Genes ras/genética , Neoplasias Pulmonares/genética , Mutación , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína p53 Supresora de Tumor/deficiencia
4.
Gastroenterology ; 159(1): 257-272.e17, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251667

RESUMEN

BACKGROUND & AIMS: Wheat has become the world's major staple and its consumption correlates with prevalence of noncommunicable disorders such as inflammatory bowel diseases. Amylase trypsin inhibitors (ATIs), a component of wheat, activate the intestine's innate immune response via toll-like receptor 4 (TLR4). We investigated the effects of wheat and ATIs on severity of colitis and fecal microbiota in mice. METHODS: C57BL/6 wild-type and Tlr4-/- mice were fed wheat- or ATI-containing diets or a wheat-free (control) diet and then given dextran sodium sulfate to induce colitis; we also studied Il10-/- mice, which develop spontaneous colitis. Changes in fecal bacteria were assessed by taxa-specific quantitative polymerase chain reaction and 16S ribosomal RNA metagenomic sequencing. Feces were collected from mice on wheat-containing, ATI-containing, control diets and transplanted to intestines of mice with and without colitis on control or on ATI-containing diets. Intestinal tissues were collected and analyzed by histology, immunohistochemistry, and flow cytometry. Bacteria with reported immunomodulatory effects were incubated with ATIs and analyzed in radial diffusion assays. RESULTS: The wheat- or ATI-containing diets equally increased inflammation in intestinal tissues of C57BL/6 mice with colitis, compared with mice on control diets. The ATI-containing diet promoted expansion of taxa associated with development of colitis comparable to the wheat-containing diet. ATIs inhibited proliferation of specific human commensal bacteria in radial diffusion assays. Transplantation of microbiota from feces of mice fed the wheat- or ATI-containing diets to intestines of mice on control diets increased the severity of colitis in these mice. The ATI-containing diet did not increase the severity of colitis in Tlr4-/- mice. CONCLUSIONS: Consumption of wheat or wheat ATIs increases intestinal inflammation in mice with colitis, via TLR4, and alters their fecal microbiota. Wheat-based, ATI-containing diets therefore activate TLR4 signaling and promote intestinal dysbiosis.


Asunto(s)
Colitis/inmunología , Disbiosis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Proteínas de Vegetales Comestibles/efectos adversos , Triticum/inmunología , Alimentación Animal/efectos adversos , Animales , Colitis/inducido químicamente , Colitis/diagnóstico , Colitis/microbiología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Disbiosis/diagnóstico , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Heces/microbiología , Microbioma Gastrointestinal/inmunología , Humanos , Inmunidad Innata , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/microbiología , Masculino , Ratones , Ratones Noqueados , Proteínas de Vegetales Comestibles/inmunología , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Inhibidores de Tripsina/efectos adversos , Inhibidores de Tripsina/inmunología
5.
Gastroenterology ; 152(5): 1100-1113.e12, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27993525

RESUMEN

BACKGROUND & AIMS: Wheat amylase-trypsin inhibitors (ATIs) are nutritional activators of innate immunity, via activation of the toll-like receptor 4 (TLR4) on myeloid cells. We aimed to characterize the biologic activity of ATIs in various foods and their effect on intestinal inflammation. METHODS: We selected 38 different gluten-containing and gluten-free products, either unprocessed (such as wheat, rye, barley, quinoa, amaranth, soya, lentils, and rice) or processed (such as pizza, pasta, bread, and biscuits). ATIs were extracted and their biological activities determined in TLR4-responsive mouse and human cell lines. Effects of oral ATIs on intestinal inflammation were determined in healthy C57BL/6 mice on a gluten-free or ATI-free diet and in mice given low-level polyinosinic:polycytidylic acid or dextran sodium sulfate to induce colitis. Parameters of innate and adaptive immune activation were determined in duodenum, ileum, colon, and mesenteric lymph nodes. RESULTS: Modern gluten-containing staples had levels of TLR4-activating ATIs that were as much as 100-fold higher than in most gluten-free foods. Processed or baked foods retained ATI bioactivity. Most older wheat variants (such as Emmer or Einkorn) had lower bioactivity than modern (hexaploid) wheat. ATI species CM3 and 0.19 were the most prevalent activators of TLR4 in modern wheat and were highly resistant to intestinal proteolysis. Their ingestion induced modest intestinal myeloid cell infiltration and activation, and release of inflammatory mediators-mostly in the colon, then in the ileum, and then in the duodenum. Dendritic cells became prominently activated in mesenteric lymph nodes. Concentrations of ATIs found in a normal daily gluten-containing diet increased low-level intestinal inflammation. CONCLUSIONS: Gluten-containing cereals have by far the highest concentrations of ATIs that activate TLR4. Orally ingested ATIs are largely resistant to proteases and heat, and increase intestinal inflammation by activating gut and mesenteric lymph node myeloid cells.


Asunto(s)
Amilasas/antagonistas & inhibidores , Enfermedad Celíaca/inmunología , Colitis/inmunología , Glútenes/inmunología , Intestinos/inmunología , Células Mieloides/inmunología , Receptor Toll-Like 4/inmunología , Inhibidores de Tripsina/inmunología , Inmunidad Adaptativa , Animales , Línea Celular , Colitis/inducido químicamente , Colon/inmunología , Sulfato de Dextran/toxicidad , Dieta Sin Gluten , Duodeno/inmunología , Humanos , Íleon/inmunología , Inmunidad Innata/inmunología , Inflamación , Inductores de Interferón/toxicidad , Ganglios Linfáticos/inmunología , Mesenterio , Ratones , Ratones Endogámicos C57BL , Proteínas de Plantas/inmunología , Poli I-C/toxicidad , Triticum/inmunología
6.
Mol Pharm ; 15(9): 3909-3919, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30028629

RESUMEN

Targeting mRNA to eukaryotic cells is an emerging technology for basic research and provides broad applications in cancer immunotherapy, vaccine development, protein replacement, and in vivo genome editing. Although a plethora of nanoparticles for efficient mRNA delivery exists, in vivo mRNA targeting to specific organs, tissue compartments, and cells remains a major challenge. For this reason, methods for reporting the in vivo targeting specificity of different mRNA nanoparticle formats will be crucial. Here, we describe a straightforward method for monitoring the in vivo targeting efficiency of mRNA-loaded nanoparticles in mice. To achieve accurate mRNA delivery readouts, we loaded lipoplex nanoparticles with Cre-recombinase-encoding mRNA and injected these into commonly used Cre reporter mouse strains. Our results show that this approach provides readouts that accurately report the targeting efficacy of mRNA into organs, tissue structures, and single cells as a function of the used mRNA delivery system. The method described here establishes a versatile basis for determining in vivo mRNA targeting profiles and can be systematically applied for testing and improving mRNA packaging formats.


Asunto(s)
Nanopartículas/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Cromatografía Liquida , Liposomas/química , Espectrometría de Masas , Ratones , Tamaño de la Partícula
7.
Int J Cancer ; 132(3): 591-604, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753274

RESUMEN

GTP cyclohydrolase (GCH1) is the key-enzyme to produce the essential enzyme cofactor, tetrahydrobiopterin. The byproduct, neopterin is increased in advanced human cancer and used as cancer-biomarker, suggesting that pathologically increased GCH1 activity may promote tumor growth. We found that inhibition or silencing of GCH1 reduced tumor cell proliferation and survival and the tube formation of human umbilical vein endothelial cells, which upon hypoxia increased GCH1 and endothelial NOS expression, the latter prevented by inhibition of GCH1. In nude mice xenografted with HT29-Luc colon cancer cells GCH1 inhibition reduced tumor growth and angiogenesis, determined by in vivo luciferase and near-infrared imaging of newly formed blood vessels. The treatment with the GCH1 inhibitor shifted the phenotype of tumor associated macrophages from the proangiogenic M2 towards M1, accompanied with a shift of plasma chemokine profiles towards tumor-attacking chemokines including CXCL10 and RANTES. GCH1 expression was increased in mouse AOM/DSS-induced colon tumors and in high grade human colon and skin cancer and oppositely, the growth of GCH1-deficient HT29-Luc tumor cells in mice was strongly reduced. The data suggest that GCH1 inhibition reduces tumor growth by (i) direct killing of tumor cells, (ii) by inhibiting angiogenesis, and (iii) by enhancing the antitumoral immune response.


Asunto(s)
Inhibidores Enzimáticos/farmacología , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/metabolismo , Macrófagos/fisiología , Neoplasias/patología , Neovascularización Patológica , Animales , Biomarcadores de Tumor/metabolismo , Biopterinas/análogos & derivados , Biopterinas/biosíntesis , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quimiocinas/sangre , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , GTP Ciclohidrolasa/genética , Células HT29 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/inmunología , Neoplasias/metabolismo , Neopterin/biosíntesis , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Interferencia de ARN , ARN Interferente Pequeño , Neoplasias Cutáneas/metabolismo , Trasplante Heterólogo
8.
Brain Behav Immun ; 32: 186-200, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23643685

RESUMEN

The chemokine CCL21 is released from injured neurons and acts as a ligand of the chemokine receptor, CXCR3, which likely contributes to pro-inflammatory adaptations and secondary neuronal damage. CCL21-CXCR3 signalling may therefore impact on the development of neuropathic pain. By using the respective knockout mice we show that deficiency of CCL19/21 in plt/plt mice attenuates nerve injury evoked pain but not the hyperalgesia evoked by autoimmune encephalomyelitis (EAE). Oppositely, CXCR3-deficiency had no protective effect after traumatic nerve injury but reduced EAE-evoked hyperalgesia and was associated with reduced clinical EAE scores, a reduction of the pro-inflammatory cell infiltration and reduced upregulation of interferon gamma and interleukin-17 in the spinal cord. In contrast, microglia activation in the spinal cord after traumatic sciatic nerve injury was neither attenuated in CXCR3(-/-) nor plt/plt mice, nor in double knockouts. However, the severity of EAE, but not the hyperalgesia, was also reduced in plt/plt mice, which was associated with reduced infiltration of the spinal cord with CCR7+ T-cells, an increase of CD25+ T-cells and reduced upregulation of CXCL9 and 10, CCL11 and 12. The data show that CCL21 and CXCR3 have dichotomous functions in traumatic and EAE-evoked neuropathic pain suggesting diverse mechanisms likely requiring diverse treatments although both types of neuropathic pain are mediated in part through the immune activation.


Asunto(s)
Quimiocina CCL21/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Hiperalgesia/inmunología , Hiperalgesia/metabolismo , Receptores CXCR3/metabolismo , Animales , Conducta Animal/fisiología , Quimiocina CCL21/genética , Frío , Encefalomielitis Autoinmune Experimental/patología , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Calor , Hiperalgesia/patología , Masculino , Ratones , Ratones Noqueados , Microglía/fisiología , Neuralgia/inmunología , Neuralgia/metabolismo , Dimensión del Dolor , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR3/genética , Médula Espinal/patología , Linfocitos T/fisiología
9.
Ther Adv Neurol Disord ; 16: 17562864231170928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384112

RESUMEN

Background: Western lifestyle has been associated with an increase in relapsing-remitting multiple sclerosis (RRMS). In mice, dietary wheat amylase-trypsin inhibitors (ATIs) activate intestinal myeloid cells and augment T cell-mediated systemic inflammation. Objective: The aim of this study was to assess whether a wheat- and thus ATI-reduced diet might exert beneficial effects in RRMS patients with modest disease activity. Methods: In this 6-month, crossover, open-label, bicentric proof-of-concept trial, 16 RRMS patients with stable disease course were randomized to either 3 months of a standard wheat-containing diet with consecutive switch to a > 90% wheat-reduced diet, or vice versa. Results: The primary endpoint was negative, as the frequency of circulating pro-inflammatory T cells did not decrease during the ATI-reduced diet. We did, however, observe decreased frequencies of CD14+ CD16++ monocytes and a concomitant increase in CD14++ CD16- monocytes during the wheat-reduced diet interval. This was accompanied by an improvement in pain-related quality of life in health-related quality of life assessed (SF-36). Conclusion: Our results suggest that the wheat- and thus ATI-reduced diet was associated with changes in monocyte subsets and improved pain-related quality of life in RRMS patients. Thus, a wheat (ATI)-reduced diet might be a complementary approach accompanying immunotherapy for some patients. Registration: German Clinical Trial Register (No. DRKS00027967).

10.
J Neurosci ; 29(41): 12919-29, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19828806

RESUMEN

Inhibitor kappaB kinase (IKK) regulates the activity of the transcription factor nuclear factor-kappa B that normally protects neurons against excitotoxicity. Constitutively active IKK is enriched at axon initial segments and nodes of Ranvier (NR). We used mice with a Cre-loxP-mediated specific deletion of IKKbeta in sensory neurons of the dorsal root ganglion (SNS-IKKbeta(-/-)) to evaluate whether IKK plays a role in sensory neuron excitability and nociception. We observed increased sensitivity to mechanical, cold, noxious heat and chemical stimulation in SNS-IKKbeta(-/-) mice, with normal proprioceptive and motor functions as revealed by gait analysis. This was associated with increased calcium influx and increased inward currents in small- and medium-sized primary sensory neurons of SNS-IKKbeta(-/-) mice during stimulation with capsaicin or Formalin, specific activators of transient receptor potentials TRPV1 and TRPA1 calcium channels, respectively. In vitro stimulation of saphenous nerve preparations of SNS-IKKbeta(-/-) mice showed increased neuronal excitability of A- and C-fibers but unchanged A- and C-fiber conduction velocities, normal voltage-gated sodium channel currents, and normal accumulation of ankyrin G and the sodium channels Nav1.6 at NR. The results suggest that IKKbeta functions as a negative modulator of sensory neuron excitability, mediated at least in part by modulation of TRP channel sensitivity.


Asunto(s)
Ganglios Espinales/citología , Quinasa I-kappa B/deficiencia , Nociceptores/fisiología , Umbral del Dolor/fisiología , Canales Catiónicos TRPV/fisiología , Animales , Ancirinas/metabolismo , Área Bajo la Curva , Conducta Animal , Calcio/metabolismo , Capsaicina/farmacología , Células Cultivadas , Regulación de la Expresión Génica/genética , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Actividad Motora/genética , Canal de Sodio Activado por Voltaje NAV1.8 , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Nociceptores/efectos de los fármacos , Dimensión del Dolor/métodos , Técnicas de Placa-Clamp/métodos , Estimulación Física/efectos adversos , Tiempo de Reacción/genética , Nervio Ciático , Fármacos del Sistema Sensorial/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Tetrodotoxina/farmacología
11.
Sci Rep ; 9(1): 17463, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767938

RESUMEN

We previously demonstrated that a common dietary protein component, wheat amylase trypsin inhibitors (ATI), stimulate intestinal macrophages and dendritic cells via toll like receptor 4. Activation of these intestinal myeloid cells elicits an inflammatory signal that is propagated to mesenteric lymph nodes, and that can facilitate extraintestinal inflammation. Mice were fed a well-defined high fat diet, with (HFD/ATI) or without (HFD) nutritionally irrelevant amounts of ATI. Mice on HFD/ATI developed only mild signs of intestinal inflammation and myeloid cell activation but displayed significantly higher serum triglycerides and transaminases compared to mice on HFD alone. Moreover, they showed increased visceral and liver fat, and a higher insulin resistance. ATI feeding promoted liver and adipose tissue inflammation, with M1-type macrophage polarization and infiltration, and enhanced liver fibrogenesis. Gluten, the major protein component of wheat, did not induce these pathologies. Therefore, wheat ATI ingestion in minute quantities comparable to human daily wheat consumption exacerbated features of the metabolic syndrome and non-alcoholic steatohepatitis, despite its irrelevant caloric value.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/etiología , Triticum/química , Inhibidores de Tripsina/efectos adversos , Alanina Transaminasa/sangre , Alimentación Animal/toxicidad , Animales , Colágeno/análisis , Dieta con Restricción de Grasas , Dieta Alta en Grasa/efectos adversos , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Glútenes/administración & dosificación , Glútenes/toxicidad , Hipertrigliceridemia/etiología , Inflamación , Insulina/sangre , Resistencia a la Insulina , Grasa Intraabdominal/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Síndrome Metabólico/complicaciones , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Zeína/administración & dosificación
12.
J Crohns Colitis ; 10(8): 965-78, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26928964

RESUMEN

BACKGROUND AND AIMS: Guanosine triphosphate cyclohydrolase [GCH1] governs the production of the enzyme cofactor tetrahydrobiopterin [BH4] which is essential for biogenic amine synthesis, lipid metabolism via alkylglycerol monooxygenase [AGMO], and redox coupling of nitric oxide synthases [NOSs]. Inflammation-evoked unequal regulation of GCH1 and NOS or AGMO may cause redox stress and lipid imbalances. METHODS: The present study assessed potential therapeutic effects of rebalancing these systems with BH4 in experimental colitis in mice. RESULTS: Oral treatment with BH4 as a suspension of crushed tablets attenuated colitis, whereas inhibition of its production had opposite effects: aggravated weight loss, epithelial haemorrhages and ulcers, neutrophil infiltrates, production of reactive oxygen species, and unfavourable profile changes of endocannabinoids, ceramides, and lysophosphatidic acids. Conversely, oral BH4 normalised biopterin, reduced in vivo activity of oxidases and peroxidases in the inflamed gut, favoured nitric oxide over hydrogen peroxide, and maintained normal levels of lipid signalling molecules. BH4 favoured thereby resident CD3+CD8+ and regulatory CD3+CD25+ intraepithelial T cells that are important for epithelial integrity. CONCLUSIONS: BH4 protected against colitis in mice via two major pathways: [i] by reduction of oxidative stress; and [ii] by re-orchestration of alkyl- and acylglycerolipid signalling via AGMO. Oral treatment with BH4 is a safe approved supplementary therapy for genetic BH4 deficiency and did not excessively increase systemic BH4 levels. Therefore, one may consider repurposing of oral BH4 as an adjunctive treatment for colitis.


Asunto(s)
Biopterinas/análogos & derivados , Colitis/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Administración Oral , Animales , Biomarcadores/metabolismo , Biopterinas/farmacología , Biopterinas/uso terapéutico , Western Blotting , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Fármacos Gastrointestinales/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Resultado del Tratamiento
13.
Best Pract Res Clin Gastroenterol ; 29(3): 469-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26060111

RESUMEN

Non allergy-non-celiac wheat sensitivity (NCWS) has become a common and often overrated diagnosis. Skepticism mainly relates to patients with prominent intestinal symptoms in the absence of general or intestinal signs of inflammation. There is consensus that the major wheat sensitivities, celiac disease and wheat allergy, have to be ruled out which may be difficult for wheat allergy. The non-inflammatory intolerances to carbohydrates, mainly lactose and FODMAPs (fermentable oligi-, di-, monosaccharides and polyols), which cause bloating or diarrhoea, can usually be excluded clinically or by simple tests. Recent studies and experimental data strongly indicate that NCWS exists in a substantial proportion of the population, that it is an innate immune reaction to wheat and that patients often present with extraintestinal symptoms, such as worsening of an underlying inflammatory disease in clear association with wheat consumption. Wheat amylase-trypsin inhibitors (ATIs) have been identified as the most likely triggers of NCWS. They are highly protease resistant and activate the toll-like receptor 4 (TLR4) complex in monocytes, macrophages and dendritic cells of the intestinal mucosa. Non-gluten containing cereals or staples display no or little TLR4 stimulating activity. Wheat ATIs are a family of up to 17 similar proteins of molecular weights around 15 kD and represent 2-4% of the wheat protein. With oral ingestion they costimulate antigen presenting cells and promote T cell activation in celiac disease, but also in other immune-mediated diseases within and outside the GI tract.


Asunto(s)
Hipersensibilidad al Trigo/diagnóstico , Enfermedad Celíaca/diagnóstico , Diagnóstico Diferencial , Humanos
14.
PLoS One ; 10(3): e0118401, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799189

RESUMEN

Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.


Asunto(s)
Citrobacter rodentium/inmunología , Colitis/prevención & control , Colon/inmunología , Infecciones por Enterobacteriaceae/prevención & control , Células Epiteliales/inmunología , Intestinos/inmunología , Factor de Transcripción STAT3/fisiología , Animales , Colitis/etiología , Colon/microbiología , Colon/patología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Oncoscience ; 1(4): 272-282, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25594019

RESUMEN

BACKGROUND AND AIMS: Endocannabinoids may modify cancer development, progression and associated pain. We determined whether cancer-evoked dysregulations in this system become manifest in altered tissue and plasma endocannabinoids. METHODS: Endocannabinoid changes due to cancer were explored in a local and metastatic syngeneic mouse melanoma model. Endocannabinoid stratification in human cancer was cross-sectionally assessed in the plasma of 304 patients (147 men, 157 women, aged 32 - 87 years) suffering from several types of cancer at Roman Numeral Staging between I and IVc, mostly IV (n = 220), and compared with endocannabinoids of healthy controls. RESULTS: In mice with local tumor growth, ethanolamide endocannabinoids, i.e., anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were downregulated, whereas 2-arachidonoylglycerol (2-AG) was increased. Upon spreading of the cancer cells particularly 2-AG steadily increased in parallel to disease progression while OEA modulated cell migration. Results translated into humans, in whom cancer was associated with a decreased AEA, increased 2-AG and increased OEA correlating with the number of metastases. CONCLUSIONS: The endocannabinoid system was subject to cancer-associated regulations to an extent that led to measurable changes in circulating endocannabinoid levels, emphasizing the importance of the endocannabinoid system in the pathophysiology of cancer.

16.
J Mol Med (Berl) ; 90(12): 1473-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22706600

RESUMEN

Noncoding polymorphisms of the GTP cyclohydrolase gene (GCH1) reduce the risk for chronic pain in humans suggesting GCH1 inhibitors as analgesics. We assessed the effects of the GCH1 inhibitor diaminohydroxypyrimidine (DAHP) on nociception and inflammation in a mouse melanoma and a sarcoma cancer pain model, and its co-effects with morphine in terms of analgesic efficacy and respiratory depression. GCH1 inhibition did not reduce the tumor-evoked nociceptive hypersensitivity of the tumor-bearing paw. However, DAHP reduced melanoma- and sarcoma-evoked systemic hyperalgesia as determined by analyzing contralateral paws. GCH1 inhibition increased the inflammatory edema and infiltration with polymorphonuclear leukocytes surrounding the tumor but reduced the tumor-evoked microglia activation in the spinal cord suggesting that an increase of the local immune attack against the tumor may avoid general pain hypersensitivity. When used in combination with morphine at high or low doses, GCH1 inhibition increased and prolonged the analgesic effects of the opioid. It did not, however, increase the respiratory depression caused by morphine. Conversely, the GCH1-product, tetrahydrobiopterin, caused hyperalgesia, antagonized antinociceptive effects of morphine, and aggravated morphine-evoked respiratory depression, the latter mimicked by a cGMP analog suggesting that respiratory effects were partly mediated through the BH4-NO-cGMP pathway. The observed effects of GCH1 inhibition in the tumor model and its enhancement of morphine-evoked antinociception without increase of morphine toxicity suggest that GCH1 inhibitors might be useful as co-therapeutics for opioids in cancer patients.


Asunto(s)
GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/metabolismo , Morfina/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Dolor/tratamiento farmacológico , Dolor/enzimología , Animales , Masculino , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Ratones , Ratones Endogámicos C57BL , Sarcoma/tratamiento farmacológico , Sarcoma/enzimología , Azúcares Ácidos/uso terapéutico
17.
Cell Cycle ; 9(4): 652-5, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20160497

RESUMEN

The intestinal epithelium that lines the mucosal surface along the GI-tract is a key player for the intestinal homeostasis of the healthy individual. In case of a mucosal damage or a barrier defect as seen in patients with inflammatory bowel disease, the balance is disturbed, and translocation of intestinal microbes to the submucosa is facilitated. We recently demonstrated a pivotal role of STAT3 activation in intestinal epithelial cells (IEC) for the restoration of the balance at the mucosal surface of the gut in an experimental colitis model. STAT3 was rapidly induced in intestinal epithelial cells upon challenge of mice in both experimental colitis and intestinal wound healing models. STAT3 activation was found to be dispensable in the steady-state conditions but was important for efficient regeneration of the epithelium in response to injury. Here, we extend our previous findings by showing epithelial STAT3 activation in human patients suffering from IBD and provide additional insights how the activation of epithelial STAT3 by IL-22 regulates intestinal homeostasis and mucosal wound healing. We also demonstrate that antibody-mediated neutralization of IL-22 has little impact on the development of experimental colitis in mice, but significantly delays recovery from colitis. Thus, our data suggest that targeting the STAT3 signaling pathway in IEC is a promising therapeutic approach in situations when the intestinal homeostasis is disturbed, e.g., as seen in Crohn's disease or Ulcerative colitis.


Asunto(s)
Mucosa Intestinal/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Anticuerpos/metabolismo , Anticuerpos/farmacología , Línea Celular , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Modelos Animales de Enfermedad , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Interleucinas/inmunología , Interleucinas/metabolismo , Ratones , Transducción de Señal , Cicatrización de Heridas , Interleucina-22
18.
J Exp Med ; 206(7): 1465-72, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19564350

RESUMEN

Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.


Asunto(s)
Células Epiteliales/fisiología , Interleucinas/inmunología , Mucosa Intestinal , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Sulfato de Dextran/farmacología , Células Epiteliales/citología , Perfilación de la Expresión Génica , Inflamación/inmunología , Inflamación/patología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucinas/genética , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Mucosa Intestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción STAT3/genética , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA