Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32740897

RESUMEN

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Biocombustibles , Vías Biosintéticas , Brassicaceae/metabolismo , Thlaspi/enzimología , Thlaspi/metabolismo , Triglicéridos/biosíntesis , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Erucicos/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Análisis de Secuencia , Thlaspi/genética , Transcriptoma
2.
Plant Cell Physiol ; 60(5): 1025-1040, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690505

RESUMEN

To overcome the difficulties to analyze membrane desaturases at the protein level, transgenic Arabidopsis plants expressing the plastidial AtFAD7 and AtFAD8 ω-3 desaturases fused to green fluorescent protein, under the control of their endogenous promoters, were generated and their tissue relative abundance was studied. Gene expression, glucuronidase promoter activity, immunoblot and confocal microscopy analyses indicated that AtFAD7 is the major ω-3 desaturase in leaves when compared to AtFAD8. This higher abundance of AtFAD7 was consistent with its higher promoter activity and could be related with its specificity for the abundant leaf galactolipids. AtFAD7 was also present in roots but at much lower level than leaves. AtFAD8 expression and protein abundance in leaves was consistent with its lower promoter activity, suggesting that transcriptional control modulates the abundance of both desaturases in leaves. AtFAD7 protein levels increased in response to wounding but not to jasmonate (JA), and decreased upon abscisic acid (ABA) treatment. Conversely, AtFAD8 protein levels increased upon cold or JA exposure and decreased at high temperatures, but did not respond to ABA or wounding. These results indicated specific and non-redundant roles for the plastidial ω-3 desaturases in defense, temperature stress or phytohormone mediated responses and a tight coordination of their activities between biotic and abiotic stress signaling pathways. Our data suggested that transcriptional regulation was crucial for this coordination. Finally, bimolecular fluorescence complementation analysis showed that both AtFAD7 and AtFAD8 interact with the AtFAD6 ω-6 desaturase in vivo, suggesting that quaternary complexes are involved in trienoic fatty acid production within the plastid membranes.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Ácido Graso Desaturasas/metabolismo , Oxilipinas/farmacología , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Arabidopsis/fisiología , Frío , Plastidios/fisiología
3.
Biochim Biophys Acta ; 1857(1): 115-128, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26449206

RESUMEN

Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Dicroismo Circular , Fluorescencia , Luminiscencia , Modelos Moleculares , Análisis Espectral , Temperatura , Vibración
4.
Biochim Biophys Acta ; 1857(9): 1580-1593, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27342201

RESUMEN

The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII.


Asunto(s)
Clorofila/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Dicroismo Circular , Luminiscencia
5.
Photosynth Res ; 132(3): 305-309, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28374305

RESUMEN

Using a single size-exclusion chromatography we were able to isolate highly pure dimers and monomers of the Cyt b 6 f complex from spinach from a bulk preparation of that protein complex obtained with a standard procedure. At higher protein/detergent ratio during the chromatography most of the Cyt b 6 f complex remained as dimers. In contrast, at lower protein/detergent ratio (around 15 times lower), most dimers became monomerized. As a bonus, this chromatography also allowed the elimination of potential Chl a contaminant to the Cyt b 6 f preparations. SDS-PAGE protein analysis with 18% (w/v) acrylamide revealed the loss of the ISP subunit in our monomeric preparation. However, it fully retained the content of Chl a, a prerequisite to perform any spectroscopic study involving this unique pigment.


Asunto(s)
Citocromos b/metabolismo , Spinacia oleracea/metabolismo , Cloroplastos/metabolismo , Grupo Citocromo b/metabolismo , Complejo de Citocromo b6f/metabolismo , Citocromos/metabolismo , Electroforesis en Gel de Poliacrilamida
6.
Front Plant Sci ; 15: 1386023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736440

RESUMEN

Thlaspi arvense (Pennycress) is an emerging feedstock for biofuel production because of its high seed oil content enriched in erucic acid. A transcriptomic and a lipidomic study were performed to analyze the dynamics of gene expression, glycerolipid content and acyl-group distribution during seed maturation. Genes involved in fatty acid biosynthesis were expressed at the early stages of seed maturation. Genes encoding enzymes of the Kennedy pathway like diacylglycerol acyltransferase1 (TaDGAT1), lysophosphatidic acid acyltransferase (TaLPAT) or glycerol 3-phosphate acyltransferase (TaGPAT) increased their expression with maturation, coinciding with the increase in triacylglycerol species containing 22:1. Positional analysis showed that the most abundant triacylglycerol species contained 18:2 at sn-2 position in all maturation stages, suggesting no specificity of the lysophosphatidic acid acyltransferase for very long chain fatty acids. Diacylglycerol acyltransferase2 (TaDGAT2) mRNA was more abundant at the initial maturation stages, coincident with the rapid incorporation of 22:1 to triacylglycerol, suggesting a coordination between Diacylglycerol acyltransferase enzymes for triacylglycerol biosynthesis. Genes encoding the phospholipid-diacylglycerol acyltransferase (TaPDAT1), lysophosphatidylcholine acyltransferase (TaLPCAT) or phosphatidylcholine diacylglycerolcholine phosphotransferase (TaPDCT), involved in acyl-editing or phosphatidyl-choline (PC)-derived diacylglycerol (DAG) biosynthesis showed also higher expression at the early maturation stages, coinciding with a higher proportion of triacylglycerol containing C18 fatty acids. These results suggested a higher contribution of these two pathways at the early stages of seed maturation. Lipidomic analysis of the content and acyl-group distribution of diacylglycerol and phosphatidyl-choline pools was compatible with the acyl content in triacylglycerol at the different maturation stages. Our data point to a model in which a strong temporal coordination between pathways and isoforms in each pathway, both at the expression and acyl-group incorporation, contribute to high erucic triacylglycerol accumulation in Pennycress.

7.
Photosynth Res ; 112(3): 193-204, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22855209

RESUMEN

A study of the in vitro reconstitution of sugar beet cytochrome b(559) of the photosystem II is described. Both α and ß cytochrome subunits were first cloned and expressed in Escherichia coli. In vitro reconstitution of this cytochrome was carried out with partially purified recombinant subunits from inclusion bodies. Reconstitution with commercial heme of both (αα) and (ßß) homodimers and (αß) heterodimer was possible, the latter being more efficient. The absorption spectra of these reconstituted samples were similar to that of the native heterodimer cytochrome b(559) form. As shown by electron paramagnetic resonance and potentiometry, most of the reconstituted cytochrome corresponded to a low spin form with a midpoint redox potential +36 mV, similar to that from the native purified cytochrome b(559). Furthermore, during the expression of sugar beet and Synechocystis sp. PCC 6803 cytochrome b(559) subunits, part of the protein subunits were incorporated into the host bacterial inner membrane, but only in the case of the ß subunit from the cyanobacterium the formation of a cytochrome b(559)-like structure with the bacterial endogenous heme was observed. The reason for that surprising result is unknown. This in vivo formed (ßß) homodimer cytochrome b(559)-like structure showed similar absorption and electron paramagnetic resonance spectral properties as the native purified cytochrome b(559). A higher midpoint redox potential (+126 mV) was detected in the in vivo formed protein compared to the in vitro reconstituted form, most likely due to a more hydrophobic environment imposed by the lipid membrane surrounding the heme.


Asunto(s)
Citocromos b/química , Citocromos b/metabolismo , Embryophyta/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Synechocystis/fisiología , Beta vulgaris/enzimología , Beta vulgaris/genética , Beta vulgaris/fisiología , Clonación Molecular , Citocromos b/genética , Espectroscopía de Resonancia por Spin del Electrón , Embryophyta/enzimología , Embryophyta/genética , Escherichia coli/enzimología , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Cuerpos de Inclusión , Oxidación-Reducción , Fotosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión , Synechocystis/enzimología , Synechocystis/genética , Zea mays/enzimología , Zea mays/genética , Zea mays/fisiología
8.
J Exp Bot ; 63(13): 4973-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22865909

RESUMEN

This study analysed the contribution of each omega-3 desaturase to the cold response in soybean. Exposure to cold temperatures (5 °C) did not result in great modifications of the linolenic acid content in leaf membrane lipids. However, an increase in the GmFAD3A transcripts was observed both in plant leaves and soybean cells whereas no changes in GmFAD3B or GmFAD3C expression levels were detected. This increase was reversible and accompanied by the accumulation of an mRNA encoding a truncated form of GmFAD3A (GmFAD3A-T), which originated from alternative splicing of GmFAD3A in response to cold. When the expression of plastidial omega-3 desaturases was analysed, a transient accumulation of GmFAD7-2 mRNA was detected upon cold exposure in mature soybean trifoliate leaves while GmFAD7-1 transcripts remained unchanged. No modification of the GmFAD8-1 and GmFAD8-2 transcripts was observed. The functionality of GmFAD3A, GmFAD3B, GmFAD3C and GmFAD3A-T was examined by heterologous expression in yeast. No activity was detected with GmFAD3A-T, consistent with the absence of one of the His boxes necessary for desaturase activity. The linolenic acid content of Sacharomyces cerevisiae cells overexpressing GmFAD3A or GmFAD3B was higher when the cultures were incubated at cooler temperatures, suggesting that reticular desaturases of the GmFAD3 family, and more specifically GmFAD3A, may play a role in the cold response, even in leaves. The data point to a regulatory mechanism of omega-3 fatty acid desaturases in soybean affecting specific isoforms in both the plastid and the endoplasmic reticulum to maintain appropriate levels of linolenic acid under low temperature conditions.


Asunto(s)
Aclimatación/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glycine max/enzimología , Empalme Alternativo , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula , Frío , Retículo Endoplásmico/enzimología , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/análisis , Hidroponía , Isoenzimas , Datos de Secuencia Molecular , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , ARN Mensajero/genética , ARN de Planta/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Glycine max/genética , Glycine max/fisiología , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/metabolismo
9.
J Phys Chem B ; 125(13): 3278-3285, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764072

RESUMEN

Spectral hole burning has been employed for decades to study various amorphous solids and proteins. Triplet states and respective transient holes were incorporated into theoretical models and software simulating nonphotochemical spectral hole burning (NPHB) and including all relevant distributions, in particular the distribution of the angle between the electric field of light E and transient dipole moment of the chromophore µ. The presence of a chlorophyll a triplet state with a lifetime of several milliseconds explains the slowdown of NPHB (on the depth vs illumination dose scale) with the increase of the light intensity, as well as larger hole depths observed in weak probe beam experiments, compared to those deduced from the hole growth kinetics (HGK) measurements (signal collected at a fixed wavelength while a stronger burning beam is on) in cytochrome b6f and chemically modified LH2. We also considered the solvent deuteration effects on triplet lifetime and concluded that both triplet states and local heating likely play a role in slowing down the HGK with increasing burn intensity.


Asunto(s)
Clorofila , Proteínas , Clorofila A , Cinética , Solventes
10.
Front Plant Sci ; 12: 727292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777414

RESUMEN

Trienoic fatty acids are essential constituents of biomembranes and precursors of jasmonates involved in plant defense responses. Two ω-3 desaturases, AtFAD7 and AtFAD8, synthetize trienoic fatty acids in the plastid. Promoter:GUS and mutagenesis analysis was used to identify cis-elements controlling AtFAD7 and AtFAD8 basal expression and their response to hormones or wounding. AtFAD7 promoter GUS activity was much higher than that of AtFAD8 in leaves, with specific AtFAD7 expression in the flower stamen and pistil and root meristem and vasculature. This specific tissue and organ expression of AtFAD7 was controlled by different cis-elements. Thus, promoter deletion and mutagenesis analysis indicated that WRKY proteins might be essential for basal expression of AtFAD7 in leaves. Two MYB target sequences present in the AtFAD7 promoter might be responsible for its expression in the flower stamen and stigma of the pistil and in the root meristem, and for the AtFAD7 wound-specific response. Two MYB target sequences detected in the distal region of the AtFAD8 gene promoter seemed to negatively control AtFAD8 expression, particularly in true leaves and flowers, suggesting that MYB transcription factors act as repressors of AtFAD8 gene basal expression, modulating the different relative abundance of both plastid ω-3 desaturases at the transcriptional level. Our data showed that the two ABA repression sequences detected in the AtFAD7 promoter were functional, suggesting an ABA-dependent mechanism involved in the different regulation of both ω-3 plastid desaturases. These results reveal the implication of different signaling pathways for the concerted regulation of trienoic fatty acid content in Arabidopsis.

11.
J Am Chem Soc ; 132(12): 4214-29, 2010 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-20218564

RESUMEN

We report low temperature (T) optical spectra of the isolated CP47 antenna complex from Photosystem II (PSII) with a low-T fluorescence emission maximum near 695 nm and not, as previously reported, at 690-693 nm. The latter emission is suggested to result from three distinct bands: a lowest-state emission band near 695 nm (labeled F1) originating from the lowest-energy excitonic state A1 of intact complexes (located near 693 nm and characterized by very weak oscillator strength) as well as emission peaks near 691 nm (FT1) and 685 nm (FT2) originating from subpopulations of partly destabilized complexes. The observation of the F1 emission is in excellent agreement with the 695 nm emission observed in intact PSII cores and thylakoid membranes. We argue that the band near 684 nm previously observed in singlet-minus-triplet spectra originates from a subpopulation of partially destabilized complexes with lowest-energy traps located near 684 nm in absorption (referred to as AT2) giving rise to FT2 emission. It is demonstrated that varying contributions from the F1, FT1, and FT2 emission bands led to different maxima of fluorescence spectra reported in the literature. The fluorescence spectra are consistent with the zero-phonon hole action spectra obtained in absorption mode, the profiles of the nonresonantly burned holes as a function of fluence, as well as the fluorescence line-narrowed spectra obtained for the Q(y) band. The lowest Q(y) state in absorption band (A1) is characterized by an electron-phonon coupling with the Huang-Rhys factor S of approximately 1 and an inhomogeneous width of approximately 180 cm(-1). The mean phonon frequency of the A1 band is 20 cm(-1). In contrast to previous observations, intact isolated CP47 reveals negligible contribution from the triplet-bottleneck hole, i.e., the AT2 trap. It has been shown that Chls in intact CP47 are connected via efficient excitation energy transfer to the A1 trap near 693 nm and that the position of the fluorescence maximum depends on the burn fluence. That is, the 695 nm fluorescence maximum shifts blue with increasing fluence, in agreement with nonresonant hole burned spectra. The above findings provide important constraints and parameters for future excitonic calculations, which in turn should offer new insight into the excitonic structure and composition of low-energy absorption traps.


Asunto(s)
Electrones , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Teoría Cuántica , Espectrometría de Fluorescencia , Spinacia oleracea/química
12.
J Exp Bot ; 61(12): 3371-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20547564

RESUMEN

The FAD7 gene encodes a omega3 fatty acid desaturase which catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts. A novel GmFAD7 gene (named GmFAD7-2) has been identified in soybean, with high homology to the previously annotated GmFAD7 gene. Genomic sequencing analysis together with searches at the soybean genome database further confirmed that both GmFAD7 genes were located in two different loci within the soybean genome, suggesting that the soybean omega3 plastidial desaturase FAD7 is encoded by two different paralogous genes. Both GmFAD7-1 and GmFAD7-2 genes were expressed in all soybean tissues examined, displaying their highest mRNA accumulation in leaves. This expression profile contrasted with GmFAD3A and GmFAD3B mRNA accumulation, which was very low in this tissue. These results suggested a concerted control of plastidial and reticular omega3 desaturase gene expression in soybean mature leaves. Analysis of GmFAD7 protein distribution in different soybean tissues showed that, in mature leaves, two bands were detected, coincident with the higher expression level of both GmFAD7 genes and the highest 18:3 fatty acid accumulation. By contrast, in seeds, where FAD7 activity is low, specific GmFAD7 protein conformations were observed. These GmFAD7 protein conformations were affected in vitro by changes in the redox conditions of thiol groups and iron availability. These results suggest the existence of tissue-specific post-translational regulatory mechanisms affecting the distribution and conformation of the FAD7 enzymes related with the control of its activity.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Glycine max/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cloroplastos/enzimología , Cloroplastos/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Análisis de Secuencia de Proteína , Glycine max/enzimología
13.
J Phys Chem B ; 123(51): 10930-10938, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31763829

RESUMEN

Cytochrome b6f, with one chlorophyll molecule per protein monomer, is a simple model system whose studies can help achieve a better understanding of nonphotochemical spectral hole burning (NPHB) and single-complex spectroscopy results obtained in more complicated photosynthetic chlorophyll-protein complexes. We are reporting new data and proposing an alternative explanation for spectral dynamics that was recently observed in cytochrome b6f using NPHB. The relevant distribution of the tunneling parameter λ is a superposition of two components that are nearly degenerate in terms of the resultant NPHB yield and represent two tiers of the energy landscape responsible for NPHB. These two components likely burn competitively; we present the first demonstration of modeling a competitive NPHB process. Similar values of the NPHB yield result from distinctly different combinations of barrier heights, shifts along the generalized coordinate d, and/or masses of the entities involved in conformational changes m, with md2 parameter different by a factor of 2.7. Consequently, in cytochrome b6f, the first (at least) 10 h of fixed-temperature recovery preferentially probe different components of the barrier- and λ-distributions encoded into the spectral holes than thermocycling experiments. Both components most likely represent dynamics of the protein and not of the surrounding buffer/glycerol glass.


Asunto(s)
Clorofila/química , Complejo de Citocromo b6f/química , Modelos Químicos , Análisis Espectral/métodos , Transferencia de Energía , Cinética , Temperatura
14.
Biochim Biophys Acta ; 1767(6): 694-702, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17442261

RESUMEN

Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 degrees C and the Q band was upshifted by 5 degrees C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700(+) was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.


Asunto(s)
Diurona/farmacología , Glycine max/efectos de los fármacos , Glycine max/genética , Herbicidas/farmacología , Línea Celular , Transporte de Electrón , Resistencia a los Insecticidas/genética , Cinética , Mutación , Oxidación-Reducción , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Glycine max/metabolismo , Espectrometría de Fluorescencia , Temperatura
15.
J Phys Chem B ; 112(32): 9921-33, 2008 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-18642949

RESUMEN

The CP43 core antenna complex of photosystem II is known to possess two quasi-degenerate "red"-trap states (Jankowiak, R. et al. J. Phys. Chem. B 2000, 104, 11805). It has been suggested recently (Zazubovich, V.; Jankowiak, R. J. Lumin. 2007, 127, 245) that the site distribution functions of the red states (A and B) are uncorrelated and that narrow holes are burned in the subpopulations of chlorophylls (Chls) from states A and B that are the lowest-energy Chl in their complex and previously thought not to transfer energy. This model of uncorrelated excitation energy transfer (EET) between the quasidegenerate bands is expanded by taking into account both electron-phonon and vibrational coupling. The model is applied to fit simultaneously absorption, emission, zero-phonon action, and transient hole burned (HB) spectra obtained for the CP43 complex with minimized contribution from aggregation. It is demonstrated that the above listed spectra can be well-fitted using the uncorrelated EET model, providing strong evidence for the existence of efficient energy transfer between the two lowest energy states, A and B (either from A to B or from B to A), in CP43. Possible candidate Chls for the low-energy A and B states are discussed, providing a link between CP43 structure and spectroscopy. Finally, we propose that persistent holes originate from regular NPHB accompanied by the redistribution of oscillator strength due to excitonic interactions, rather than photoconversion involving Chl-protein hydrogen bonding, as suggested before ( Hughes J. L. et al. Biochemistry 2006, 45, 12345 ). In the accompanying paper (Reppert, M.; Zazubovich, V.; Dang, N. C.; Seibert, M.; Jankowiak, R. J. Phys. Chem. B 2008, 9934), it is demonstrated that the model discussed in this manuscript is consistent with excitonic calculations, which also provide very good fits to both transient and persistent HB spectra obtained under non-line-narrowing conditions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Complejo de Proteína del Fotosistema II/química , Electroforesis Capilar , Transferencia de Energía , Modelos Moleculares , Espectrometría de Fluorescencia
16.
Photochem Photobiol ; 83(6): 1301-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18028201

RESUMEN

Photosystem I particles (PSI-200) isolated from spinach leaves were studied by means of absorbance, 77K fluorescence and resonance Raman (RR) spectroscopy. The aim was to obtain better insight into the changes of the pigment spectral properties in those particles during prolonged exposure to high-light intensities and to reveal the involvement of these pigments in the photoprotection of the PSI. During prolonged exposure to high-light intensities of spinach PSI particles, a loss of a significant amount of photosynthetic pigments was observed. It was shown that various pigments exhibited different susceptibility to photodamage. In addition to bleaching of chlorophyll a (Chl a), bleaching of carotenoids was also clearly observed. RR technique allowed us to recognize the type and conformation of photobleached carotenoid molecules. Raman data revealed a nearly full photobleaching of the long-wavelength lutein molecules. The observed similar bleaching rate of the lutein molecules and the most-red shifted long-wavelength Chl a, located in the antenna membrane protein Lhca4, suggested that these molecules are located closely. Our results showed that the photobleached antenna pigments and especially luteins and the most long-wavelength absorbing chlorophylls are involved in photoprotection of PSI core complex.


Asunto(s)
Carotenoides/química , Clorofila/química , Luz , Fotoblanqueo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Electrones , Pigmentos Biológicos/química , Espectrofotometría , Spinacia oleracea/enzimología
17.
J Plant Physiol ; 208: 7-16, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27889523

RESUMEN

We studied erucic acid accumulation in the biodiesel feedstock Pennycress (Thlaspi arvense L.) as a first step towards the development of a sustainable strategy for biofuel production in the EU territory. To that end, two inbred Pennycress lines of European origin, "NASC" and "French," were cultivated in a controlled chamber and in experimental field plots, and their growth, seed production and seed oil characteristics analyzed. Differences in some agronomical traits like vernalization (winter-French versus spring-NASC), flowering time (delayed in the French line) and seed production (higher in the French line) were detected. Both lines showed a high amount (35-39%) of erucic acid (22:1Δ13) in their seed oil. Biochemical characterization of the Pennycress seed oil indicated that TAG was the major reservoir of 22:1Δ13. Incorporation of 22:1Δ13 to TAG occurred very early during seed maturation, concomitant with a decrease of desaturase activity. This change in the acyl fluxes towards elongation was controlled by different genes at different levels. TaFAE1 gene, encoding the fatty acid elongase, seemed to be controlled at the transcriptional level with high expression at the early stages of seed development. On the contrary, the TaFAD2 gene that encodes the Δ12 fatty acid desaturase or TaDGAT1 that catalyzes TAG biosynthesis were controlled post-transcriptionally. TaWRI1, the master regulator of seed-oil biosynthesis, showed also high expression at the early stages of seed development. Our data identified genes and processes that might improve the biotechnological manipulation of Pennycress seeds for high-quality biodiesel production.


Asunto(s)
Acetiltransferasas/genética , Ácidos Erucicos/metabolismo , Ácido Graso Desaturasas/genética , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Thlaspi/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Biocombustibles , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Thlaspi/crecimiento & desarrollo , Thlaspi/metabolismo , Triglicéridos/metabolismo
18.
J Phys Chem B ; 121(42): 9848-9858, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28956922

RESUMEN

In non-photochemical spectral hole burning (NPHB) and spectral hole recovery experiments, cytochrome b6f protein exhibits behavior that is almost independent of the deuteration of the buffer/glycerol glassy matrix containing the protein, apart from some differences in heat dissipation. On the other hand, strong dependence of the hole burning properties on sample preparation procedures was observed and attributed to a large increase of the electron-phonon coupling and shortening of the excited-state lifetime occurring when n-dodecyl ß-d-maltoside (DM) is used as a detergent instead of n-octyl ß-d-glucopyranoside (OGP). The data was analyzed assuming that the tunneling parameter distribution or barrier distribution probed by NPHB and encoded into the spectral holes contains contributions from two nonidentical components with accidentally degenerate excited state λ-distributions. Both components likely reflect protein dynamics, although with some small probability one of them (with larger md2) may still represent the dynamics involving specifically the -OH groups of the water/glycerol solvent. Single proton tunneling in the water/glycerol solvent environment or in the protein can be safely excluded as the origin of observed NPHB and hole recovery dynamics. The intensity dependence of the hole growth kinetics in deuterated samples likely reflects differences in heat dissipation between protonated and deuterated samples. These differences are most probably due to the higher interface thermal resistivity between (still protonated) protein and deuterated water/glycerol outside environment.


Asunto(s)
Complejo de Citocromo b6f/química , Detergentes/química , Glicerol/química , Termodinámica , Agua/química , Desnaturalización Proteica , Solventes/química , Espectrometría de Fluorescencia
19.
FEBS Lett ; 580(20): 4934-40, 2006 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-16930600

RESUMEN

The omega3 fatty-acid desaturases: FAD7 and FAD8 (plastid) and FAD3 (reticular) are responsible for trienoic fatty-acid (TA) production in plants. The expression of these enzymes seemed to be regulated differently in response to light. Darkness leads to a decrease in total TA level. Under such conditions, FAD3 and FAD8 transcript levels were undetectable but increased after re-illumination concomitant with TA levels, indicating a transcriptional control. On the contrary, FAD7 transcript levels were similar to illuminated control cells, suggesting the presence of a post-transcriptional control mechanism. Furthermore, FAD7 mRNA stability increased dramatically in darkness. Analysis of FAD7 protein accumulation using specific antibodies revealed that FAD7 was very stable whatever the light or darkness conditions. These results indicate that FAD7 enzyme availability is not limiting for 18:3 production in darkness. Our data point to an additional post-translational regulatory mechanism that controls the activity of FAD7 in response to light.


Asunto(s)
Ácido Graso Desaturasas , Glycine max/enzimología , Isoenzimas , Luz , Proteínas de Plantas , Estabilidad del ARN , Transcripción Genética , Secuencia de Aminoácidos , Anticuerpos/metabolismo , Células Cultivadas , Oscuridad , Estabilidad de Enzimas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Glycine max/citología
20.
Biochim Biophys Acta ; 1554(1-2): 29-35, 2002 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-12034468

RESUMEN

Photosynthetic oxygen evolution is an extremely heat-sensitive process and incubation of spinach Photosystem II (PSII) membranes at 40 degrees C for only several minutes leads to its complete inactivation. Substitution experiments of the spinach 33-kDa manganese stabilizing protein by a homologue protein, isolated either from the thermophilic cyanobacterium Phormidium laminosum, or from Escherichia coli as a recombinant thermophilic cyanobacterial protein, showed a significant increase in tolerance to heat inactivation of the oxygen-evolving activity. The results allow us to suggest that thermal inactivation of oxygen evolution in higher plant PSII membranes is due to dissociation of the 33-kDa protein as a consequence of temperature-induced conformational changes, and stabilization can be provided by substitution by a thermostable homologue whose secondary structure and binding to PSII remain unaltered at moderately high temperatures.


Asunto(s)
Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II , Proteínas/metabolismo , Cloruro de Calcio/farmacología , Cianobacterias , Electroforesis en Gel de Poliacrilamida , Calor , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Conformación Proteica , Proteínas/química , Serina Endopeptidasas/metabolismo , Spinacia oleracea , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA