Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234813

RESUMEN

Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable "future" lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of "Schiff-base ILs" for further investigation that could also be designed to be task specific.


Asunto(s)
Líquidos Iónicos , Lignina , Aldehídos , Aminas , Biomasa , Hidrólisis , Iminas , Líquidos Iónicos/química , Lignina/química , Azúcares
2.
Plant J ; 94(2): 340-351, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29418030

RESUMEN

Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing ß-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-ß-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactanos/metabolismo , Galactosiltransferasas/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Catálisis , Galactosa/metabolismo , Microsomas/enzimología , Microsomas/metabolismo , Nucleósidos/metabolismo , Vigna/enzimología , Vigna/metabolismo
3.
Plant Cell Physiol ; 59(12): 2624-2636, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184190

RESUMEN

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched ß-1, 4-galactan. Plants in which all three genes were inactivated had no detectable ß-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactanos/metabolismo , Glicosiltransferasas/metabolismo , Arabidopsis/genética , Pared Celular/metabolismo , Genes de Plantas , Aparato de Golgi/metabolismo , Hojas de la Planta/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Nicotiana/metabolismo
4.
BMC Biotechnol ; 18(1): 54, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180895

RESUMEN

BACKGROUND: Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. RESULTS: Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. CONCLUSION: Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass.


Asunto(s)
Aciltransferasas/genética , Lignina/metabolismo , Oryza/enzimología , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Aciltransferasas/metabolismo , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Environ Sci Technol ; 50(5): 2530-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26843403

RESUMEN

Lead (Pb) is a major urban pollutant, due to deteriorating lead-based paint in houses built before 1978. Phytoremediation is an inexpensive and effective technique for remediation of Pb-contaminated homes. Vetiver (Chrysopogon zizanioides), a noninvasive, fast-growing grass with high biomass, can tolerate and accumulate large quantities of Pb in its tissues. Lead is known to induce phytochelatins and antioxidative enzymes in vetiver; however, the overall impact of Pb stress on metabolic pathways of vetiver is unknown. In the current study, vetiver plants were treated with different concentrations of Pb in a hydroponic setup. Metabolites were extracted and analyzed using LC/MS/MS. Multivariate analysis of metabolites in both root and shoot tissue showed tremendous induction in key metabolic pathways including sugar metabolism, amino acid metabolism, and an increase in production of osmoprotectants, such as betaine and polyols, and metal-chelating organic acids. The data obtained provide a comprehensive insight into the overall stress response mechanisms in vetiver.


Asunto(s)
Chrysopogon/efectos de los fármacos , Chrysopogon/metabolismo , Plomo/toxicidad , Biodegradación Ambiental , Cromatografía Liquida , Hidroponía/métodos , Inactivación Metabólica , Plomo/farmacocinética , Redes y Vías Metabólicas , Metabolómica/métodos , Fitoquelatinas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Espectrometría de Masas en Tándem/métodos
6.
J Proteome Res ; 13(12): 5879-87, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25327737

RESUMEN

Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress.


Asunto(s)
Metaboloma , Raíces de Plantas/metabolismo , Zea mays/metabolismo , Plomo/farmacología , Metabolómica , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico , Espectrometría de Masas en Tándem , Zea mays/efectos de los fármacos
7.
Environ Sci Technol ; 48(2): 1184-93, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24383886

RESUMEN

Marginal soils arise due to various industrial and agricultural practices reducing crop productivity. Pseudomonas sp. TLC 6-6.5-4 is a free-living multiple-metal-resistant plant-growth-promoting bacteria (PGPB) isolated from Torch Lake sediment that promotes maize growth and nutrient uptake. In this study, we examined both PGPB-soil and PGPB-plant interactions. PGPB inoculation resulted in significant increase in maize biomass. Soil inoculation before sowing seeds and coating seeds with the PGPB resulted in higher copper uptake by maize compared to other methods. The PGPB-soil interaction improved phosphorus uptake by maize and led to significant decrease in organic bound copper in marginal soil and a notable increase in exchangeable copper. PGPB improved soil health based on soil enzyme activities. Metabolomic analysis of maize revealed that PGPB inoculation upregulated photosynthesis, hormone biosynthesis, and tricarboxylic acid cycle metabolites. Proteomic analysis identified upregulation of proteins related to plant development and stress response. Further, the activity of antioxidant enzymes and total phenolics decreased in plants grown in marginal soil suggesting alleviation of metal stress in presence of PGPB. The ability of PGPB to modulate interconnected biochemical pathways could be exploited to increase crop productivity in marginal soils, phytoremediation of metal contaminated soils, and organic agriculture.


Asunto(s)
Biomasa , Cobre/metabolismo , Metabolómica/métodos , Metales/toxicidad , Proteómica/métodos , Pseudomonas/fisiología , Zea mays/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Redes y Vías Metabólicas , Metaboloma , Desarrollo de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Pseudomonas/efectos de los fármacos , Pseudomonas/enzimología , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
8.
Metab Eng Commun ; 15: e00207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36188638

RESUMEN

Engineering bioenergy crops to accumulate coproducts in planta can increase the value of lignocellulosic biomass and enable a sustainable bioeconomy. In this study, we engineered sorghum with a bacterial gene encoding a chorismate pyruvate-lyase (ubiC) to reroute the plastidial pool of chorismate from the shikimate pathway into the valuable compound 4-hydroxybenzoic acid (4-HBA). A gene encoding a feedback-resistant version of 3-deoxy-d-arabino-heptulonate-7-phosphate synthase (aroG) was also introduced in an attempt to increase the carbon flux through the shikimate pathway. At the full maturity and senesced stage, two independent lines that co-express ubiC and aroG produced 1.5 and 1.7 dw% of 4-HBA in biomass, which represents 36- and 40-fold increases compared to the titer measured in wildtype. The two transgenic lines showed no obvious phenotypes, growth defects, nor alteration of cell wall polysaccharide content when cultivated under controlled conditions. In the field, when harvested before grain maturity, transgenic lines contained 0.8 and 1.2 dw% of 4-HBA, which represent economically relevant titers based on recent technoeconomic analysis. Only a slight reduction (11-15%) in biomass yield was observed in transgenics grown under natural environment. This work provides the first metabolic engineering steps toward 4-HBA overproduction in the bioenergy crop sorghum to improve the economics of biorefineries by accumulating a value-added coproduct that can be recovered from biomass and provide an additional revenue stream.

9.
Biotechnol Biofuels ; 14(1): 217, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801067

RESUMEN

BACKGROUND: The development of bioenergy crops with reduced recalcitrance to enzymatic degradation represents an important challenge to enable the sustainable production of advanced biofuels and bioproducts. Biomass recalcitrance is partly attributed to the complex structure of plant cell walls inside which cellulose microfibrils are protected by a network of hemicellulosic xylan chains that crosslink with each other or with lignin via ferulate (FA) bridges. Overexpression of the rice acyltransferase OsAT10 is an effective bioengineering strategy to lower the amount of FA involved in the formation of cell wall crosslinks and thereby reduce cell wall recalcitrance. The annual crop sorghum represents an attractive feedstock for bioenergy purposes considering its high biomass yields and low input requirements. Although we previously validated the OsAT10 engineering approach in the perennial bioenergy crop switchgrass, the effect of OsAT10 expression on biomass composition and digestibility in sorghum remains to be explored. RESULTS: We obtained eight independent sorghum (Sorghum bicolor (L.) Moench) transgenic lines with a single copy of a construct designed for OsAT10 expression. Consistent with the proposed role of OsAT10 in acylating arabinosyl residues on xylan with p-coumarate (pCA), a higher amount of p-coumaroyl-arabinose was released from the cell walls of these lines upon hydrolysis with trifluoroacetic acid. However, no major changes were observed regarding the total amount of pCA or FA esters released from cell walls upon mild alkaline hydrolysis. Certain diferulate (diFA) isomers identified in alkaline hydrolysates were increased in some transgenic lines. The amount of the main cell wall monosaccharides glucose, xylose, and arabinose was unaffected. The transgenic lines showed reduced lignin content and their biomass released higher yields of sugars after ionic liquid pretreatment followed by enzymatic saccharification. CONCLUSIONS: Expression of OsAT10 in sorghum leads to an increase of xylan-bound pCA without reducing the overall content of cell wall FA esters. Nevertheless, the amount of total cell wall pCA remains unchanged indicating that most pCA is ester-linked to lignin. Unlike other engineered plants overexpressing OsAT10 or a phylogenetically related acyltransferase with similar putative function, the improvements of biomass saccharification efficiency in sorghum OsAT10 lines are likely the result of lignin reductions rather than reductions of cell wall-bound FA. These results also suggest a relationship between xylan-bound pCA and lignification in cell walls.

10.
BMC Res Notes ; 13(1): 116, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103777

RESUMEN

OBJECTIVES: Sorghum is one of the most recalcitrant species for transformation. Considering the time and effort required for stable transformation in sorghum, establishing a transient system to screen the efficiency and full functionality of vector constructs is highly desirable. RESULTS: Here, we report an Agrobacterium-mediated transient transformation assay with intact sorghum leaves using green fluorescent protein as marker. It also provides a good monocot alternative to tobacco and protoplast assays with a direct, native and more reliable system for testing single guide RNA (sgRNA) expression construct efficiency. Given the simplicity and ease of transformation, high reproducibility, and ability to test large constructs, this method can be widely adopted to speed up functional genomic and genome editing studies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Genómica/métodos , Hojas de la Planta/genética , Sorghum/genética , Transformación Genética , Agrobacterium tumefaciens/genética , Genoma de Planta/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Protoplastos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reproducibilidad de los Resultados , Sorghum/metabolismo , Nicotiana/citología , Nicotiana/metabolismo
11.
Chemosphere ; 193: 903-911, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29874765

RESUMEN

Lead (Pb) contamination of residential soils in United States is attributed to use of Pb based paints prior to 1978 and their deterioration and accumulation in surface soils. Exposure to Pb due to ingestion and inhalation of Pb laden soil and dust causes neurological disorders, renal disorders, developmental and behavioral problems, particularly in children under the age of six. Vetiver grass is one of the leading choices for Pb remediation due to its ability to hyperaccumulate Pb, in addition to high biomass. In order to understand the effect of Pb on vetiver metabolic pathways, we compared the global metabolic changes in vetiver with that of maize, a Pb susceptible plant under Pb stress. Vetiver showed massive increase in levels of key metabolites in response to Pb, including amino acids, organic acids and coenzymes. Maize showed very modest increase in some of the same metabolites, and no change in others. The results provide the first indication of the difference in metabolic response of the hyperaccumulator, vetiver to lead stress as compared to maize.


Asunto(s)
Chrysopogon/química , Plomo/efectos adversos , Metabolómica/métodos , Contaminantes del Suelo/química , Suelo/química , Zea mays/química
12.
J Vis Exp ; (128)2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29155734

RESUMEN

Plant cell wall polysaccharides are notoriously difficult to analyze, and most methods require expensive equipment, skilled operators, and large amounts of purified material. Here, we describe a simple method for gaining detailed polysaccharide structural information, including resolution of structural isomers. For polysaccharide analysis by gel electrophoresis (PACE), plant cell wall material is hydrolyzed with glycosyl hydrolases specific to the polysaccharide of interest (e.g., mannanases for mannan). Large format polyacrylamide gels are then used to separate the released oligosaccharides, which have been fluorescently labeled. Gels can be visualized with a modified gel imaging system (see Table of Materials). The resulting oligosaccharide fingerprint can either be compared qualitatively or, with replication, quantitatively. Linkage and branching information can be established using additional glycosyl hydrolases (e.g., mannosidases and galactosidases). Whilst this protocol describes a method for analyzing glucomannan structure, it can be applied to any polysaccharide for which characterized glycosyl hydrolases exist. Alternatively, it can be used to characterize novel glycosyl hydrolases using defined polysaccharide substrates.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Mananos/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Mananos/química , Oligosacáridos/química , Polisacáridos/química
13.
J Agric Food Chem ; 65(12): 2588-2593, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28266214

RESUMEN

Allura red is a widely used synthetic food dye. In this study, we developed and validated a LC-MS/MS method for the quantification of allura red in three popular takeaway Chinese dishes (braised pork, soy sauce chicken, sweet and sour pork) and human urine samples. High levels of allura red ranging from 2.85 to 8.38 mg/g wet weight were detected in the surveyed Chinese dishes. Of 113 participants who frequently consume the surveyed Chinese dishes (>once a week in the past 2 years), the median of their urinary allura red level was 22.29 nM/mM creatinine (95% CI = 19.48-25.03) . Risk assessment using Cox proportional hazard models showed that a 10-fold increase in urinary allura red was positively associated with high blood pressure (odds ratio of 1.75 (95% CI = 0.78-3.96)). Our findings provide new insights for the potential risk of hypertension for long-term allura red overconsumption.


Asunto(s)
Compuestos Azo/orina , Cromatografía Líquida de Alta Presión/métodos , Colorantes de Alimentos/análisis , Productos de la Carne/análisis , Espectrometría de Masas en Tándem/métodos , Adulto , Animales , Pollos , Femenino , Humanos , Límite de Detección , Masculino , Porcinos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA