Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(27): 11938-11942, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35699519

RESUMEN

Iron hydroxides are desirable alkaline battery electrodes for low cost and environmental beneficence. However, hydrogen evolution on charging and Fe3O4 formation on discharging cause low storage capacity and poor cycling life. We report that green rust (GR) (Fe2+4Fe3+2 (HO-)12SO4), formed via sulfate insertion, promotes Fe(OH)2/FeOOH conversion and shows a discharge capacity of ∼211 mAh g-1 in half-cells and Coulombic efficiency of 93% after 300 cycles in full-cells. Theoretical calculations show that Fe(OH)2/FeOOH conversion is facilitated by intercalated sulfate anions. Classical molecular dynamics simulations reveal that electrolyte alkalinity strongly impacts the energetics of sulfate solvation, and low alkalinity ensures fast transport of sulfate ions. Anion-insertion-assisted Fe(OH)2/FeOOH conversion, also achieved with Cl- ion, paves a pathway toward efficient utilization of Fe-based electrodes for sustainable applications.


Asunto(s)
Suministros de Energía Eléctrica , Hierro , Hidróxidos , Oxidación-Reducción , Sulfatos
2.
ChemSusChem ; : e202400050, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898597

RESUMEN

Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4 on discharging and parasitic H2 on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4 conversions. Electrochemical experiments, operando X-ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate-induced strengthening of hydrogen-bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de-sorption on iron surfaces. This new silicate-assisted redox chemistry mitigates H2 and Fe3O4 formation, improving storage capacity (199 mAh g-1 in half-cells) and coulombic efficiency (94 % after 400 full-cell cycles), paving a path to realizing green battery systems built from earth-abundant materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA