RESUMEN
Pruritus (or itch) is an unpleasant sensation leading to a desire to scratch. In the epidermis, there are selective C or Aδ epidermal nerve endings that are pruriceptors. At their other ends, peripheral neurons form synapses with spinal neurons and interneurons. Many areas in the central nervous system are involved in itch processing. Although itch does not occur solely because of parasitic, allergic, or immunologic diseases, it is usually the consequence of neuroimmune interactions. Histamine is involved in a minority of itchy conditions, and many other mediators play a role: cytokines (eg, IL-4, IL-13, IL-31, IL-33, and thymic stromal lymphopoietin), neurotransmitters (eg, substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, neuropeptide Y, NBNP, endothelin 1, and gastrin-releasing peptide), and neurotrophins (eg, nerve growth factor and brain-derived neurotrophic factor). Moreover, ion channels such as voltage-gated sodium channels, transient receptor potential vanilloid 1, transient receptor ankyrin, and transient receptor potential cation channel subfamily M (melastatin) member 8 play a crucial role. The main markers of nonhistaminergic pruriceptors are PAR-2 and MrgprX2. A notable phenomenon is the sensitization to pruritus, in which regardless of the initial cause of pruritus, there is an increased responsiveness of peripheral and central pruriceptive neurons to their normal or subthreshold afferent input in the context of chronic itch.
Asunto(s)
Neuronas , Prurito , Humanos , Prurito/metabolismo , Neuronas/metabolismo , Sistema Nervioso Central , Citocinas/metabolismo , Epidermis/metabolismoRESUMEN
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Recién Nacidos , Organismos Acuáticos , Modelos Animales , Océano Pacífico , Dolor/metabolismo , Prurito/metabolismo , Ratas , Ratas WistarRESUMEN
INTRODUCTION: Seaweeds are a rich source of elements such as iodine, and are also able to accumulate contaminants such as trace elements. METHODS: The aim of this study was to assess the dietary exposure as well as the risk from iodine and trace elements in edible seaweeds for the French population using current consumption data. The contribution of seaweeds to overall dietary exposure to trace elements and iodine was evaluated, and for those substances with minimal contribution to overall dietary exposure, simulations were performed to propose increased maximal limits in seaweeds. RESULTS: Cadmium, inorganic arsenic and mercury in seaweeds were very low contributors to total dietary exposure to these contaminants (0.7 % 1.1 % and 0.1 % on average, respectively). Dietary exposure to lead via seaweed may contribute up to 3.1 % of total dietary exposure. Dietary consumption of iodine via seaweed may contribute up to 33 % of total exposure to iodine, which makes seaweeds the strongest contributor to iodine in diet. DISCUSSION: New maximal values in seaweeds are proposed for the very low contributors to total dietary exposure: 1 mg/kg dw for cadmium, 10 mg/kg dw for inorganic arsenic and 0.3 mg/kg dw for mercury.
Asunto(s)
Arsénico , Yodo , Mercurio , Algas Marinas , Oligoelementos , Oligoelementos/análisis , Exposición Dietética , Cadmio , Arsénico/análisis , Medición de RiesgoRESUMEN
Seaweeds accumulate toxic contaminants present in the surrounding waters such as trace elements, ammonium, dioxins and pesticides. Seaweed consumption data are scarce in France as in Europe. Given that seaweed consumption data are essential to assess exposure and the risks for human health linked to toxic substances, it would appear essential to generate these data. The aim of the study was to assess the current consumption of seaweed foodstuffs by the French population via an online survey conducted on 780 adults (seaweed foodstuffs consumed, percentage of consumers and frequency of consumption). The daily consumption of seaweeds was assessed. Enquiries at points of purchase were also performed to reference the type of foodstuffs found on the French market, the seaweed species present, and the percentage of seaweed in the product. These new data generated in this work will be useful for safety assessors and for safety agencies.
Asunto(s)
Dieta/estadística & datos numéricos , Algas Marinas , Adolescente , Adulto , Encuestas sobre Dietas , Femenino , Francia , Humanos , Yodo , Masculino , Metales Pesados , Agricultura Orgánica , Medición de Riesgo , Algas Marinas/química , Algas Marinas/clasificación , Adulto JovenRESUMEN
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.
RESUMEN
Until recently, itch pathophysiology was poorly understood and treatments were poorly effective in relieving itch. Current progress in our knowledge of the itch processing, the numerous mediators and receptors involved has led to a large variety of possible therapeutic pathways. Currently, inhibitors of IL-31, IL-4/13, NK1 receptors, opioids and cannabinoids, JAK, PDE4 or TRP are the main compounds involved in clinical trials. However, many new targets, such as Mas-related GPCRs and unexpected new pathways need to be also explored.
Asunto(s)
Prurito , Receptores de Neuroquinina-1 , Humanos , Terapia Molecular Dirigida , Prurito/tratamiento farmacológicoRESUMEN
Ciguatera fish poisoning is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The most distressing symptoms are cutaneous sensory disturbances, including cold dysesthesia and itch. CTXs are neurotoxins known to activate voltage-gated sodium channels, but no specific treatment exists. Peptidergic neurons have been critically involved in ciguatera fish poisoning sensory disturbances. Protease-activated receptor-2 (PAR2) is an itch- and pain-related G proteinâcoupled receptor whose activation leads to a calcium-dependent neuropeptide release. In this study, we studied the role of voltage-gated sodium channels, PAR2, and the PAR2 agonist cathepsin S in the cytosolic calcium increase and subsequent release of the neuropeptide substance P elicited by Pacific CTX-2 (P-CTX-2) in rat sensory neurons and human epidermal keratinocytes. In sensory neurons, the P-CTX-2âevoked calcium response was driven by voltage-gated sodium channels and PAR2-dependent mechanisms. In keratinocytes, P-CTX-2 also induced voltage-gated sodium channels and PAR2-dependent marked calcium response. In the cocultured cells, P-CTX-2 significantly increased cathepsin S activity, and cathepsin S and PAR2 antagonists almost abolished P-CTX-2âelicited substance P release. Keratinocytes synergistically favored the induced substance P release. Our results demonstrate that the sensory effects of CTXs involve the cathepsin S-PAR2 pathway and are potentiated by their direct action on nonexcitable keratinocytes through the same pathway.
Asunto(s)
Intoxicación por Ciguatera/patología , Ciguatoxinas/toxicidad , Epidermis/patología , Queratinocitos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Calcio/metabolismo , Catepsinas/metabolismo , Intoxicación por Ciguatera/complicaciones , Técnicas de Cocultivo , Citosol/metabolismo , Modelos Animales de Enfermedad , Epidermis/inervación , Humanos , Microscopía Intravital , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Parestesia/etiología , Parestesia/patología , Cultivo Primario de Células , Prurito/etiología , Prurito/patología , Ratas , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Análisis de la Célula Individual , Sustancia P/metabolismoRESUMEN
Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S (Cat-S) and substance P (SP) release are crucial mediators of the sensory effects of ciguatoxins (CTXs) which are PbTx analogs. This work explored the role of PAR2 and Cat-S in PbTx-1-induced sensory effects and deciphered the signaling pathway involved. We performed calcium imaging, PAR2 immunolocalization and SP release experiments in monocultured sensory neurons or co-cultured with keratinocytes treated with PbTx-1 or P-CTX-2. We demonstrated that PbTx-1-induced calcium increase and SP release involved Cat-S, PAR2 and transient receptor potential vanilloid 4 (TRPV4). The PbTx-1-induced signaling pathway included protein kinase A (PKA) and TRPV4, which are compatible with the PAR2 biased signaling induced by Cat-S. Internalization of PAR2 and protein kinase C (PKC), inositol triphosphate receptor and TRPV4 activation evoked by PbTx-1 are compatible with the PAR2 canonical signaling. Our results suggest that PbTx-1-induced sensory disturbances involve the PAR2-TRPV4 pathway. We identified PAR2, Cat-S, PKA, and PKC that are involved in TRPV4 sensitization induced by PbTx-1 in sensory neurons.
Asunto(s)
Calcio/metabolismo , Toxinas Marinas/farmacología , Oxocinas/farmacología , Receptor PAR-2/metabolismo , Transducción de Señal/efectos de los fármacos , Sustancia P/metabolismo , Animales , Catepsinas/genética , Catepsinas/metabolismo , Catepsinas/farmacología , Células Cultivadas , Dipéptidos/farmacología , Potenciales Evocados/efectos de los fármacos , Humanos , Isoxazoles/farmacología , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptor PAR-2/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismoRESUMEN
Ciguatoxins (CTXs) and brevetoxins (PbTxs) are phycotoxins that can accumulate along the marine food chain and thus cause seafood poisoning in humans, namely "ciguatera fish poisoning" (CFP) and "neurotoxic shellfish poisoning" (NSP), respectively. CFP is characterized by early gastrointestinal symptoms and typical sensory disorders (paraesthesia, pain, pruritus and cold dysaesthesia), which can persist several weeks and, in some cases, several months or years. NSP is considered a mild form of CFP with similar but less severe symptoms. After inhaled exposure, PbTxs can also cause respiratory tract irritation in healthy subjects and asthma exacerbations in predisposed subjects, whose respiratory functions may be disrupted for several days following PbTx inhalation. Mechanistically, it is well established that CTX- or PbTx-induced disturbances are primarily mainly due to voltage-gated sodium channel activation in sensory and motor peripheral nervous system. However, little is known about the pathophysiology or a potential individual susceptibility to long lasting effects of CFP/NSP. In addition to their action on the nervous system, PbTxs and CTXs were also shown to exert effects on the immune system. However, their role in the pathophysiology of syndromes induced by CTX or PbTx exposure is poorly documented. The aim of this review is to inventory the literature thus far on the inflammatory and immune effects of PbTxs and CTXs.