Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 18(5): 459-464, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936478

RESUMEN

Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes1,2. Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range3,4. In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes5-7. Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons8-11.

2.
J Am Chem Soc ; 139(4): 1699-1704, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28068763

RESUMEN

In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D-A complexes occur at photon energies below the optical gaps of both the donors and the C60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.

3.
Phys Chem Chem Phys ; 14(45): 15774-84, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23093029

RESUMEN

A series of three 5'-aryl-2,5-dithienylthiazolo[5,4-d]thiazole (DTTzTz) semiconducting molecules with different aryl substituents has been investigated as alternative acceptor materials in combination with the donor polymer poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) in order to evaluate the photoinduced charge transfer (CT) efficiency in the resulting blends, designed towards possible application in organic photovoltaics. Photoluminescence quenching together with polaron detection by electron paramagnetic resonance and photoinduced absorption (PIA) demonstrate an increasing charge transfer efficiency when the DTTzTz substituents are varied from thien-2-yl to 4-trifluoromethylphenyl and 4-cyanophenyl groups, correlating well with the increasing acceptor strength in this series of molecules. In line with this observation, there is a decrease in the effective optical bandgap relative to pure MDMO-PPV that becomes more pronounced along this series of acceptor compounds, reaching 0.12 eV in the blend with 4-CN-Ph-DTTzTz. Intermolecular interactions between the blend components lead to lower energy transitions which are found to contribute significantly to the device external quantum efficiency. The high V(OC) reached in devices based on MDMO-PPV:4-CN-Ph-DTTzTz blends meets the expectations for such a donor:acceptor combination. However, thermal activation of charge carrier recombination occurs because of the weak driving force for charge transfer, as shown by time-dependent PIA measurements, and this is suggested as a cause for the observed low photovoltaic performance.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos Orgánicos/química , Polivinilos/química , Energía Solar , Tiazoles/química , Luminiscencia , Estructura Molecular , Compuestos Orgánicos/síntesis química , Tiazoles/síntesis química
4.
J Phys Chem Lett ; 6(3): 500-4, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26261970

RESUMEN

We investigate hybrid charge transfer states (HCTS) at the planar interface between α-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer devices in the NIR at energies well below the bulk α-NPD or ZnO emission. The EQE spectra display low energy contributions clearly red-shifted with respect to the α-NPD photocurrent and partially overlapping with the EL emission. Tuning of the energy gap between the ZnO conduction band and α-NPD HOMO level (Eint) was achieved by modifying the ZnO surface with self-assembled monolayers based on phosphonic acids. We find a linear dependence of the peak position of the NIR EL on Eint, which unambiguously attributes the origin of this emission to radiative recombination between an electron on the ZnO and a hole on α-NPD. In accordance with this interpretation, we find a strictly linear relation between the open-circuit voltage and the energy of the charge state for such hybrid organic-inorganic interfaces.

5.
Dalton Trans ; 41(37): 11419-23, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22890562

RESUMEN

Metal-substituted phthalocyanine thin films such as copper-phthalocyanine (CuPc) are often used as photo-active and hole transporting layers (HTLs) in fully organic photovoltaic devices. In this work, CuPc is vacuum sublimated on an electron acceptor layer of mesoporous titania (TiO(2)) for the formation of hybrid TiO(2):CuPc solar cell devices. The performance of these hybrid solar cell devices was demonstrated without and with dye sensitization at the TiO(2):CuPc interface. The charge separation and photocurrent contribution at the interfaces in these multilayer hybrid devices was studied by using a variety of optoelectrical and photophysical characterization techniques. It is important to understand the fundamental interface properties of these multilayer hybrid solar cell devices for optimized performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA