Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Histochem Cell Biol ; 160(3): 223-251, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428210

RESUMEN

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.


Asunto(s)
Microscopía , Programas Informáticos , Humanos , Apoyo Comunitario
2.
Bioinformatics ; 37(17): 2782-2784, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33538766

RESUMEN

SUMMARY: Many biochemical processes in living organisms take place inside compartments that can interact with each other and remodel over time. In a recent work, we have shown how the stochastic dynamics of a compartmentalized biochemical system can be effectively studied using moment equations. With this technique, the time evolution of a compartment population is summarized using a finite number of ordinary differential equations, which can be analyzed very efficiently. However, the derivation of moment equations by hand can become time-consuming for systems comprising multiple reactants and interactions. Here we present Compartor, a toolbox that automatically generates the moment equations associated with a user-defined compartmentalized system. Through the moment equation method, Compartor renders the analysis of stochastic population models accessible to a broader scientific community. AVAILABILITY AND IMPLEMENTATION: Compartor is provided as a Python package and is available at https://pypi.org/project/compartor/. Source code and usage tutorials for Compartor are available at https://github.com/zechnerlab/Compartor.

3.
Bioinformatics ; 32(7): 1112-4, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628585

RESUMEN

UNLABELLED: Selective Plane Illumination Microscopy (SPIM) allows to image developing organisms in 3D at unprecedented temporal resolution over long periods of time. The resulting massive amounts of raw image data requires extensive processing interactively via dedicated graphical user interface (GUI) applications. The consecutive processing steps can be easily automated and the individual time points can be processed independently, which lends itself to trivial parallelization on a high performance computing (HPC) cluster. Here, we introduce an automated workflow for processing large multiview, multichannel, multiillumination time-lapse SPIM data on a single workstation or in parallel on a HPC cluster. The pipeline relies on snakemake to resolve dependencies among consecutive processing steps and can be easily adapted to any cluster environment for processing SPIM data in a fraction of the time required to collect it. AVAILABILITY AND IMPLEMENTATION: The code is distributed free and open source under the MIT license http://opensource.org/licenses/MIT The source code can be downloaded from github: https://github.com/mpicbg-scicomp/snakemake-workflows Documentation can be found here: http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction CONTACT: : schmied@mpi-cbg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía , Programas Informáticos , Flujo de Trabajo , Metodologías Computacionales , Lenguajes de Programación
4.
Nat Methods ; 9(7): 676-82, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22743772

RESUMEN

Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Algoritmos , Animales , Encéfalo/ultraestructura , Drosophila melanogaster/ultraestructura , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Difusión de la Información , Diseño de Software
5.
Methods ; 68(1): 60-73, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24732429

RESUMEN

Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Molecular/métodos , Algoritmos , Animales
6.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659887

RESUMEN

Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain's volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly's visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the ~53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.

8.
Bioinformatics ; 28(22): 3009-11, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962343

RESUMEN

SUMMARY: ImgLib2 is an open-source Java library for n-dimensional data representation and manipulation with focus on image processing. It aims at minimizing code duplication by cleanly separating pixel-algebra, data access and data representation in memory. Algorithms can be implemented for classes of pixel types and generic access patterns by which they become independent of the specific dimensionality, pixel type and data representation. ImgLib2 illustrates that an elegant high-level programming interface can be achieved without sacrificing performance. It provides efficient implementations of common data types, storage layouts and algorithms. It is the data model underlying ImageJ2, the KNIME Image Processing toolbox and an increasing number of Fiji-Plugins. AVAILABILITY: ImgLib2 is licensed under BSD. Documentation and source code are available at http://imglib2.net and in a public repository at https://github.com/imagej/imglib. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online. CONTACT: saalfeld@mpi-cbg.de


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Lenguajes de Programación , Programas Informáticos
9.
bioRxiv ; 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-36865282

RESUMEN

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain -- the file format that underlies so many personal, institutional, and global data management and analysis tasks.

10.
J Vis Exp ; (148)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31205315

RESUMEN

Drosophila immature eggs are called egg chambers, and their structure resembles primitive organs that undergo morphological changes from a round to an ellipsoid shape during development. This developmental process is called oogenesis and is crucial to generating functional mature eggs to secure the next fly generation. For these reasons, egg chambers have served as an ideal and relevant model to understand animal organ development. Several in vitro culturing protocols have been developed, but there are several disadvantages to these protocols. One involves the application of various covers that exert an artificial pressure on the imaged egg chambers in order to immobilize them and to increase the imaged acquisition plane of the circumferential surface of the analyzed egg chambers. Such an approach may negatively influence the behavior of the thin actomyosin machinery that generates the power to rotate egg chambers around their longer axis. Thus, to overcome this limitation, we culture Drosophila egg chambers freely in the media in order to reliably analyze actomyosin machinery along the circumference of egg chambers. In the first part of the protocol, we provide a manual detailing how to analyze the actomyosin machinery in a limited acquisition plane at the local cellular scale (up to 15 cells). In the second part of the protocol, we provide users with a new Fiji-based plugin that allows the simple extraction of a defined thin layer of the egg chambers' circumferential surface. The following protocol then describes how to analyze actomyosin signals at the tissue scale (>50 cells). Finally, we pinpoint the limitations of these approaches at both the local cellular and tissue scales and discuss its potential future development and possible applications.


Asunto(s)
Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Películas Cinematográficas , Óvulo/metabolismo , Citoesqueleto de Actina , Animales , Drosophila , Drosophila melanogaster/metabolismo , Femenino , Oogénesis , Óvulo/citología , Imagen de Lapso de Tiempo , Técnicas de Cultivo de Tejidos
11.
Elife ; 72018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29595475

RESUMEN

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.


Asunto(s)
Anfípodos/embriología , Linaje de la Célula , Biología Computacional/métodos , Extremidades/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Morfogénesis , Imagen Óptica/métodos , Animales , Fluorescencia , Genes Reporteros , Programas Informáticos , Análisis Espacio-Temporal , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA