Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(1): e100882, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31750562

RESUMEN

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Intolerancia a la Glucosa/etiología , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Islotes Pancreáticos/patología , Metanfetamina/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Exposición Materna/efectos adversos , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768204

RESUMEN

Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.


Asunto(s)
Éter , Plasmalógenos , Animales , Humanos , Ratones , Éteres , Éteres de Etila , Corazón , Mamíferos/metabolismo
3.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30209240

RESUMEN

Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Estrés Fisiológico , Neuronas Adrenérgicas/patología , Animales , Factor Neurotrófico Ciliar/genética , Hipotálamo/patología , Locus Coeruleus/patología , Ratones , Ratones Noqueados , Ratas
4.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34244620

RESUMEN

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Plasticidad Neuronal , Envejecimiento , Animales , Encéfalo , Hipocampo , Plasticidad Neuronal/fisiología , Ratas
5.
Amino Acids ; 54(1): 85-98, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34842969

RESUMEN

Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R. Three compounds that showed the highest similarity index were selected for synthesis and bioactivity profiling. All main synthesis products as well as the isolated intermediates, were properly characterized. The physico-chemical analyses were performed using HRESIMS, GC/MS, LC/MS with UV-Vis detection, and FTIR, 1H NMR and 13C NMR spectroscopy. Binding to D1 and D2 receptors and inhibition of dopamine reuptake via dopamine transporter were measured for the synthesized analogues of DHX and SKF 38393.


Asunto(s)
Catecolaminas , Receptores de Dopamina D1 , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Fenantridinas/farmacología , Receptores de Dopamina D1/metabolismo
6.
Hum Mol Genet ; 28(12): 2046-2061, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30759250

RESUMEN

Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Lípidos/deficiencia , Norepinefrina/metabolismo , Aciltransferasas/genética , Animales , Síntomas Conductuales/genética , Síntomas Conductuales/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Dopamina/deficiencia , Éter/química , Éter/metabolismo , Homeostasis , Humanos , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Plasmalógenos , Agitación Psicomotora/genética , Agitación Psicomotora/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Habilidades Sociales , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
7.
J Neurochem ; 152(6): 650-662, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31608979

RESUMEN

The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ-aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post-mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38-81 years old) into about 80 tissue parts. We then investigated rostro-caudal, dorso-ventral, and medio-lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson's disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age-dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson's disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure.


Asunto(s)
Biomarcadores/análisis , Núcleo Caudado/química , Neurotransmisores/análisis , Putamen/química , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Colina O-Acetiltransferasa/análisis , Dopamina/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Cambios Post Mortem , Putamen/fisiología , Serotonina/análisis , Ácido gamma-Aminobutírico/análisis
8.
Eur J Neurosci ; 45(1): 192-197, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27741357

RESUMEN

In the human brain, the claustrum is a small subcortical telencephalic nucleus, situated between the insular cortex and the putamen. A plethora of neuroanatomical studies have shown the existence of dense, widespread, bidirectional and bilateral monosynaptic interconnections between the claustrum and most cortical areas. A rapidly growing body of experimental evidence points to the integrative role of claustrum in complex brain functions, from motor to cognitive. Here, we examined for the first time, the behaviour of the classical monoamine neurotransmitters dopamine, noradrenaline and serotonin in the claustrum of the normal autopsied human brain and of patients who died with idiopathic Parkinson's disease (PD). We found in the normal claustrum substantial amounts of all three monoamine neurotransmitters, substantiating the existence of the respective brain stem afferents to the claustrum. In PD, the levels of dopamine and noradrenaline were greatly reduced by 93 and 81%, respectively. Serotonin levels remained unchanged. We propose that by virtue of their projections to the claustrum, the brain stem dopamine, noradrenaline and serotonin systems interact directly with the cortico-claustro-cortical information processing mechanisms, by-passing their (parallel) routes via the basal ganglia-thalamo-cortical circuits. We suggest that loss of dopamine and noradrenaline in the PD claustrum is critical in the aetiology of both the motor and the non-motor symptoms of PD.


Asunto(s)
Ganglios Basales/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Corteza Cerebral/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Serotonina/metabolismo
9.
Mov Disord ; 31(11): 1729-1733, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27297192

RESUMEN

INTRODUCTION: The nigrostriatal dopaminergic pathway is more susceptible to neurodegeneration in primates than in mice, including the neurotoxic effect of MPTP. Apoptosis-inducing-factor was shown to be involved in the pathogenesis of dopaminergic degeneration. We therefore compared its occurrence in nigral dopamine neurons of mice, monkeys, and humans. METHODS: Paraffin-embedded brain slices, including the SNpc of C57BL/6J mice, rhesus monkeys, and humans, were immunohistochemically labeled for tyrosine hydroxylase (an enzyme of dopamine synthesis), microtubule-associated protein 2 (a neuronal marker), and apoptosis-inducing factor and examined by confocal laser scan microscopy. RESULTS: The amount of apoptosis-inducing factor in TH-containing SN neurons was 15 times higher in monkeys and 50 times higher in humans than in mice in terms of apoptosis-inducing factor immunoreactive neuronal area excluding the nucleus. CONCLUSION: The difference of apoptosis-inducing factor levels between primates and mice might contribute to the higher sensitivity of primates to MPTP-induced neurodegeneration of their nigrostriatal dopamine system. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Bancos de Tejidos , Tirosina 3-Monooxigenasa/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Persona de Mediana Edad
10.
J Neurosci ; 34(24): 8210-8, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920625

RESUMEN

The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson's disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [(3)H]dihydrotetrabenazine were profoundly reduced in PD by 87-90% and 71-80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in PD.


Asunto(s)
Cuerpo Estriado/ultraestructura , Dopamina/metabolismo , Enfermedad de Parkinson/patología , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacocinética , Femenino , Ácido Homovanílico/metabolismo , Humanos , Intoxicación por MPTP/patología , Macaca fascicularis , Masculino , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacocinética , Tritio/metabolismo , Tritio/farmacocinética
11.
Nature ; 462(7272): 505-9, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19940926

RESUMEN

Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/fisiología , Fiebre/inducido químicamente , Fiebre/metabolismo , Ligando RANK/farmacología , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Caracteres Sexuales , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Niño , Dinoprostona/metabolismo , Femenino , Fiebre/complicaciones , Perfilación de la Expresión Génica , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/complicaciones , Neumonía/metabolismo , Ligando RANK/administración & dosificación , Ligando RANK/antagonistas & inhibidores , Ligando RANK/metabolismo , Ratas , Ratas Wistar , Receptor Activador del Factor Nuclear kappa-B/genética , Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E
13.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746104

RESUMEN

Loss of select neuronal populations such as midbrain dopamine (DA) neurons is a pathological hallmark of Parkinson's disease (PD). The small neuronal protein α-synuclein has been related both genetically and neuropathologically to PD, yet how it contributes to selective vulnerability remains elusive. Here, we describe the generation of a novel adeno-associated viral vector (AAV) for Cre-dependent overexpression of wild-type human α-synuclein. Our strategy allows us to restrict α-synuclein to select neuronal populations and hence investigate the cell-autonomous effects of elevated α-synuclein in genetically-defined cell types. Since DA neurons in the substantia nigra pars compacta (SNc) are particularly vulnerable in PD, we investigated in more detail the effects of increased α-synuclein in these cells. AAV-mediated overexpression of wildtype human α-synuclein in SNc DA neurons increased the levels of α-synuclein within these cells and augmented phosphorylation of α-synuclein at serine-129, which is considered a pathological feature of PD and other synucleinopathies. However, despite abundant α-synuclein overexpression and hyperphosphorylation we did not observe any DA neurodegeneration up to 90 days post virus infusion. In contrast, we noticed that overexpression of α-synuclein resulted in increased locomotor activity and elevated striatal DA levels suggesting that α-synuclein enhanced dopaminergic activity. We therefore conclude that cell-autonomous effects of elevated α-synuclein are not sufficient to trigger acute DA neurodegeneration.

14.
J Neurochem ; 125(5): 657-62, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23331162

RESUMEN

We recently found severe noradrenaline deficits throughout the thalamus of patients with Parkinson's disease [C. Pifl, S. J. Kish and O. Hornykiewicz Mov Disord. 27, 2012, 1618.]. As this noradrenaline loss was especially severe in nuclei of the motor thalamus normally transmitting basal ganglia motor output to the cortex, we hypothesized that this noradrenaline loss aggravates the motor disorder of Parkinson's disease. Here, we analysed noradrenaline, dopamine and serotonin in motor (ventrolateral and ventroanterior) and non-motor (mediodorsal, centromedian, ventroposterior lateral and reticular) thalamic nuclei in MPTP-treated monkeys who were always asymptomatic; who recovered from mild parkinsonism; and monkeys with stable, either moderate or severe parkinsonism. We found that only the symptomatic parkinsonian animals had significant noradrenaline losses specifically in the motor thalamus, with the ventroanterior motor nucleus being affected only in the severe parkinsonian animals. In contrast, the striatal dopamine loss was identical in both the mild and severe symptom groups. MPTP-treatment had no significant effect on noradrenaline in non-motor thalamic nuclei or dopamine and serotonin in any thalamic subregion. We conclude that in the MPTP primate model, loss of noradrenaline in the motor thalamus may also contribute to the clinical expression of the parkinsonian motor disorder, corroborating experimentally our hypothesis on the role of thalamic noradrenaline deficit in Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Intoxicación por MPTP/metabolismo , Norepinefrina/metabolismo , Trastornos Parkinsonianos/metabolismo , Serotonina/metabolismo , Núcleos Talámicos/metabolismo , Animales , Intoxicación por MPTP/patología , Macaca fascicularis , Masculino , Norepinefrina/antagonistas & inhibidores , Trastornos Parkinsonianos/patología , Índice de Severidad de la Enfermedad , Núcleos Talámicos/patología
15.
NPJ Parkinsons Dis ; 9(1): 89, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322038

RESUMEN

Incidental Lewy body disease (ILBD) is a neuropathological diagnosis of brains with Lewy bodies without clinical neuropsychiatric symptoms. Dopaminergic deficits suggest a relationship to preclinical Parkinson's disease (PD). We now report a subregional pattern of striatal dopamine loss in ILBD cases, with dopamine found significantly decreased in the putamen (-52%) and only to a lower extent in the caudate (-38%, not statistically significant); this is similar to the pattern in idiopathic PD in various neurochemical and in vivo imaging studies. We aimed to find out if our recently reported impaired storage of dopamine in striatal synaptic vesicles prepared from striatal tissue of cases with idiopathic PD might be an early or even causative event. We undertook parallel measurements of [3H]dopamine uptake and vesicular monoamine transporter (VMAT)2 binding sites by the specific label [3H]dihydrotetrabenazine on vesicular preparation from caudate and putamen in ILBD. Neither specific uptake of dopamine and binding of [3H]dihydrotetrabenazine, nor mean values of the calculated ratios of dopamine uptake and VMAT2 binding, a measure of uptake rate per transport site, were significantly different between ILBD and controls. ATP-dependence of [3H]dopamine uptake revealed significantly higher rates in putamen than in caudate at saturating concentrations of ATP in controls, a subregional difference lost in ILBD. Our findings support a loss of the normally higher VMAT2 activity in putamen as a contributing factor to the higher susceptibility of the putamen to dopamine depletion in idiopathic PD. Moreover, we suggest ILBD postmortem tissue as a valuable source for testing hypotheses on processes in idiopathic PD.

16.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648438

RESUMEN

The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Células HEK293 , Transporte Iónico
17.
Biomolecules ; 13(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759815

RESUMEN

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transporte Biológico , Relación Estructura-Actividad , Norepinefrina , Ligandos
18.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214873

RESUMEN

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

19.
Hippocampus ; 22(3): 590-603, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21509853

RESUMEN

Recently, expression of glutamate decarboxylase-67 (GAD67), a key enzyme of GABA synthesis, was detected in the otherwise glutamatergic mossy fibers of the rat hippocampus. Synthesis of the enzyme was markedly enhanced after experimentally induced status epilepticus. Here, we investigated the expression of GAD67 protein and mRNA in 44 hippocampal specimens from patients with mesial temporal lobe epilepsy (TLE) using double immunofluorescence histochemistry, immunoblotting, and in situ hybridization. Both in specimens with (n = 37) and without (n = 7) hippocampal sclerosis, GAD67 was highly coexpressed with dynorphin in terminal areas of mossy fibers, including the dentate hilus and the stratum lucidum of sector CA3. In the cases with Ammon's horn sclerosis, also the inner molecular layer of the dentate gyrus contained strong staining for GAD67 immunoreactivity, indicating labeling of mossy fiber terminals that specifically sprout into this area. Double immunofluorescence revealed the colocalization of GAD67 immunoreactivity with the mossy fiber marker dynorphin. The extent of colabeling correlated with the number of seizures experienced by the patients. Furthermore, GAD67 mRNA was found in granule cells of the dentate gyrus. Levels, both of GAD67 mRNA and of GAD67 immunoreactivity were similar in sclerotic and nonsclerotic specimens and appeared to be increased compared to post mortem controls. Provided that the strong expression of GAD67 results in synthesis of GABA in hippocampal mossy fibers this may represent a self-protecting mechanism in TLE. In addition GAD67 expression also may result in conversion of excessive intracellular glutamate to nontoxic GABA within mossy fiber terminals.


Asunto(s)
Epilepsia del Lóbulo Temporal/enzimología , Glutamato Descarboxilasa/metabolismo , Hipocampo/enzimología , Fibras Musgosas del Hipocampo/enzimología , Adolescente , Adulto , Anciano , Animales , Niño , Giro Dentado/enzimología , Dinorfinas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/enzimología , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA