Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 429(2): 323-33, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20465544

RESUMEN

AMPK (AMP-activated protein kinase) signalling plays a key role in whole-body energy homoeostasis, although its precise role in pancreatic beta-cell function remains unclear. In the present study, we therefore investigated whether AMPK plays a critical function in beta-cell glucose sensing and is required for the maintenance of normal glucose homoeostasis. Mice lacking AMPK alpha2 in beta-cells and a population of hypothalamic neurons (RIPCre alpha2KO mice) and RIPCre alpha2KO mice lacking AMPK alpha1 (alpha1KORIPCre alpha2KO) globally were assessed for whole-body glucose homoeostasis and insulin secretion. Isolated pancreatic islets from these mice were assessed for glucose-stimulated insulin secretion and gene expression changes. Cultured beta-cells were examined electrophysiologically for their electrical responsiveness to hypoglycaemia. RIPCre alpha2KO mice exhibited glucose intolerance and impaired GSIS (glucose-stimulated insulin secretion) and this was exacerbated in alpha1KORIPCre alpha2KO mice. Reduced glucose concentrations failed to completely suppress insulin secretion in islets from RIPCre alpha2KO and alpha1KORIPCre alpha2KO mice, and conversely GSIS was impaired. Beta-cells lacking AMPK alpha2 or expressing a kinase-dead AMPK alpha2 failed to hyperpolarize in response to low glucose, although KATP (ATP-sensitive potassium) channel function was intact. We could detect no alteration of GLUT2 (glucose transporter 2), glucose uptake or glucokinase that could explain this glucose insensitivity. UCP2 (uncoupling protein 2) expression was reduced in RIPCre alpha2KO islets and the UCP2 inhibitor genipin suppressed low-glucose-mediated wild-type mouse beta-cell hyperpolarization, mimicking the effect of AMPK alpha2 loss. These results show that AMPK alpha2 activity is necessary to maintain normal pancreatic beta-cell glucose sensing, possibly by maintaining high beta-cell levels of UCP2.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Glucoquinasa/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Transportador de Glucosa de Tipo 2/metabolismo , Homeostasis , Hipoglucemia/fisiopatología , Hipotálamo/fisiología , Técnicas In Vitro , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Potenciales de la Membrana , Ratones , Ratones Noqueados , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Ratas , Transducción de Señal , Proteína Desacopladora 2
2.
Open Biol ; 4: 140051, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806840

RESUMEN

The Parkinson's disease (PD) gene, PARK6, encodes the PTEN-induced putative kinase 1 (PINK1) mitochondrial kinase, which provides protection against oxidative stress-induced apoptosis. Given the link between glucose metabolism, mitochondrial function and insulin secretion in ß-cells, and the reported association of PD with type 2 diabetes, we investigated the response of PINK1-deficient ß-cells to glucose stimuli to determine whether loss of PINK1 affected their function. We find that loss of PINK1 significantly impairs the ability of mouse pancreatic ß-cells (MIN6 cells) and primary intact islets to take up glucose. This was accompanied by higher basal levels of intracellular calcium leading to increased basal levels of insulin secretion under low glucose conditions. Finally, we investigated the effect of PINK1 deficiency in vivo and find that PINK1 knockout mice have improved glucose tolerance. For the first time, these combined results demonstrate that loss of PINK1 function appears to disrupt glucose-sensing leading to enhanced insulin release, which is uncoupled from glucose uptake, and suggest a key role for PINK1 in ß-cell function.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Diabetes ; 60(3): 735-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21266325

RESUMEN

OBJECTIVE: AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase ß (CaMKKß) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS: Mice lacking either Camkkß or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS: Deletion of Camkkß in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS: Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.


Asunto(s)
Glucosa/metabolismo , Homeostasis/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Análisis de Varianza , Animales , Área Bajo la Curva , Peso Corporal/genética , Recuento de Células , Ingestión de Alimentos/genética , Electrofisiología , Metabolismo Energético/genética , Femenino , Glucosa/genética , Técnica de Clampeo de la Glucosa , Inmunohistoquímica , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Transgénicos , Proopiomelanocortina/genética , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Estadísticas no Paramétricas
4.
Cell Metab ; 10(5): 343-54, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19883613

RESUMEN

PI3K signaling is thought to mediate leptin and insulin action in hypothalamic pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, through largely unknown mechanisms. We inactivated either p110alpha or p110beta PI3K catalytic subunits in these neurons and demonstrate a dominant role for the latter in energy homeostasis regulation. In POMC neurons, p110beta inactivation prevented insulin- and leptin-stimulated electrophysiological responses. POMCp110beta null mice exhibited central leptin resistance, increased adiposity, and diet-induced obesity. In contrast, the response to leptin was not blocked in p110alpha-deficient POMC neurons. Accordingly, POMCp110alpha null mice displayed minimal energy homeostasis abnormalities. Similarly, in AgRP neurons, p110beta had a more important role than p110alpha. AgRPp110alpha null mice displayed normal energy homeostasis regulation, whereas AgRPp110beta null mice were lean, with increased leptin sensitivity and resistance to diet-induced obesity. These results demonstrate distinct metabolic roles for the p110alpha and p110beta isoforms of PI3K in hypothalamic energy regulation.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Metabolismo Energético/fisiología , Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proopiomelanocortina/metabolismo , Adiposidad/genética , Animales , Fosfatidilinositol 3-Quinasa Clase I , Dieta , Fenómenos Electrofisiológicos , Hipotálamo/metabolismo , Insulina/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Leptina/metabolismo , Ratones , Ratones Noqueados , Células Neuroendocrinas/enzimología , Obesidad/genética , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA