Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 79(6): 340, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661927

RESUMEN

Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3-/- endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.


Asunto(s)
Células Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular , Técnicas de Cocultivo , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Proteínas Proto-Oncogénicas/genética
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835400

RESUMEN

Cerebral cavernous malformation (CCM) is a neurovascular disease that can lead to seizures and stroke-like symptoms. The familial form is caused by a heterozygous germline mutation in either the CCM1, CCM2, or CCM3 gene. While the importance of a second-hit mechanism in CCM development is well established, it is still unclear whether it immediately triggers CCM development or whether additional external factors are required. We here used RNA sequencing to study differential gene expression in CCM1 knockout induced pluripotent stem cells (CCM1-/- iPSCs), early mesoderm progenitor cells (eMPCs), and endothelial-like cells (ECs). Notably, CRISPR/Cas9-mediated inactivation of CCM1 led to hardly any gene expression differences in iPSCs and eMPCs. However, after differentiation into ECs, we found the significant deregulation of signaling pathways well known to be involved in CCM pathogenesis. These data suggest that a microenvironment of proangiogenic cytokines and growth factors can trigger the establishment of a characteristic gene expression signature upon CCM1 inactivation. Consequently, CCM1-/- precursor cells may exist that remain silent until entering the endothelial lineage. Collectively, not only downstream consequences of CCM1 ablation but also supporting factors must be addressed in CCM therapy development.


Asunto(s)
Diferenciación Celular , Hemangioma Cavernoso del Sistema Nervioso Central , Células Madre Pluripotentes Inducidas , Proteína KRIT1 , Transcriptoma , Humanos , Diferenciación Celular/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteína KRIT1/genética , Proteínas Proto-Oncogénicas/genética , Microambiente Tumoral , Técnicas de Inactivación de Genes
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555281

RESUMEN

Deletions in the CCM1, CCM2, and CCM3 genes are a common cause of familial cerebral cavernous malformations (CCMs). In current molecular genetic laboratories, targeted next-generation sequencing or multiplex ligation-dependent probe amplification are mostly used to identify copy number variants (CNVs). However, both techniques are limited in their ability to specify the breakpoints of CNVs and identify complex structural variants (SVs). To overcome these constraints, we established a targeted Cas9-mediated nanopore sequencing approach for CNV detection with single nucleotide resolution. Using a MinION device, we achieved complete coverage for the CCM genes and determined the exact size of CNVs in positive controls. Long-read sequencing for a CCM1 and CCM2 CNV revealed that the adjacent ANKIB1 and NACAD genes were also partially or completely deleted. In addition, an interchromosomal insertion and an inversion in CCM2 were reliably re-identified by long-read sequencing. The refinement of CNV breakpoints by long-read sequencing enabled fast and inexpensive PCR-based variant confirmation, which is highly desirable to reduce costs in subsequent family analyses. In conclusion, Cas9-mediated nanopore sequencing is a cost-effective and flexible tool for molecular genetic diagnostics which can be easily adapted to various target regions.


Asunto(s)
Proteínas Portadoras , Variaciones en el Número de Copia de ADN , Secuenciación de Nanoporos , Humanos , Proteínas Portadoras/genética , Sistemas CRISPR-Cas , Reacción en Cadena de la Polimerasa Multiplex
4.
J Cell Mol Med ; 23(3): 1771-1783, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30549232

RESUMEN

CCM3, originally described as PDCD10, regulates blood-brain barrier integrity and vascular maturation in vivo. CCM3 loss-of-function variants predispose to cerebral cavernous malformations (CCM). Using CRISPR/Cas9 genome editing, we here present a model which mimics complete CCM3 inactivation in cavernous endothelial cells (ECs) of heterozygous mutation carriers. Notably, we established a viral- and plasmid-free crRNA:tracrRNA:Cas9 ribonucleoprotein approach to introduce homozygous or compound heterozygous loss-of-function CCM3 variants into human ECs and studied the molecular and functional effects of long-term CCM3 inactivation. Induction of apoptosis, sprouting, migration, network and spheroid formation were significantly impaired upon prolonged CCM3 deficiency. Real-time deformability cytometry demonstrated that loss of CCM3 induces profound changes in cell morphology and mechanics: CCM3-deficient ECs have an increased cell area and elastic modulus. Small RNA profiling disclosed that CCM3 modulates the expression of miRNAs that are associated with endothelial ageing. In conclusion, the use of CRISPR/Cas9 genome editing provides new insight into the consequences of long-term CCM3 inactivation in human ECs and supports the hypothesis that clonal expansion of CCM3-deficient dysfunctional ECs contributes to CCM formation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Evolución Clonal , Endotelio Vascular/patología , Proteínas de la Membrana/metabolismo , Mutación , Neovascularización Patológica/etiología , Proteínas Proto-Oncogénicas/metabolismo , Alelos , Apoptosis , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Sistemas CRISPR-Cas , Endotelio Vascular/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , MicroARNs/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética
5.
Front Mol Biosci ; 9: 953048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090026

RESUMEN

Cerebral cavernous malformations are clusters of aberrant vessels that can lead to severe neurological complications. Pathogenic loss-of-function variants in the CCM1, CCM2, or CCM3 gene are associated with the autosomal dominant form of the disease. While interpretation of variants in protein-coding regions of the genes is relatively straightforward, functional analyses are often required to evaluate the impact of non-coding variants. Because of multiple alternatively spliced transcripts and different transcription start points, interpretation of variants in the 5' untranslated and upstream regions of CCM1 is particularly challenging. Here, we identified a novel deletion of the non-coding exon 1 of CCM1 in a proband with multiple CCMs which was initially classified as a variant of unknown clinical significance. Using CRISPR/Cas9 genome editing in human iPSCs, we show that the deletion leads to loss of CCM1 protein and deregulation of KLF2, THBS1, NOS3, and HEY2 expression in iPSC-derived endothelial cells. Based on these results, the variant could be reclassified as likely pathogenic. Taken together, variants in regulatory regions need to be considered in genetic CCM analyses. Our study also demonstrates that modeling variants of unknown clinical significance in an iPSC-based system can help to come to a final diagnosis.

6.
Med Genet ; 33(3): 251-259, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38835694

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular lesions that can cause severe neurological complications due to intracranial hemorrhage. Although the CCM disease genes, CCM1, CCM2, and CCM3, have been known for more than 15 years now, our understanding of CCM pathogenesis is still incomplete. CCM research currently focuses on three main disease mechanisms: (1) clonal expansion of endothelial cells with biallelic inactivation of CCM1, CCM2, or CCM3, (2) recruitment of cells with preserved CCM protein expression into the growing lesion, and (3) disruption of endothelial cell-cell junctions in CCMs. We here describe novel CRISPR/Cas9-based in vitro models of CCM and discuss their strengths and limitations in the context of high-throughput drug screening and repurposing approaches.

7.
Sci Rep ; 10(1): 6306, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286434

RESUMEN

Autosomal dominant cerebral cavernous malformations (CCM) are leaky vascular lesions that can cause epileptic seizures and stroke-like symptoms. Germline mutations in either CCM1, CCM2 or CCM3 are found in the majority of patients with multiple CCMs or a positive family history. Recently, the first copy number neutral inversion in CCM2 has been identified by whole genome sequencing in an apparently mutation-negative CCM family. We here asked the question whether further structural genomic rearrangements can be detected within NGS gene panel data of unsolved CCM cases. Hybrid capture NGS data of eight index patients without a pathogenic single nucleotide, indel or copy number variant were analyzed using two bioinformatics pipelines. In a 58-year-old male with multiple CCMs in his brain and spinal cord, we identified a 294 kb insertion within the coding sequence of CCM2. Fine mapping of the breakpoints, molecular cytogenetic studies, and multiplex ligation-dependent probe amplification verified that the structural variation was an inverted unbalanced insertion that originated from 1p12-p11.2. As this rearrangement disrupts exon 6 of CCM2 on 7p13, it was classified as pathogenic. Our study demonstrates that efforts to detect structural variations in known disease genes increase the diagnostic sensitivity of genetic analyses for well-defined Mendelian disorders.


Asunto(s)
Encéfalo/anomalías , Proteínas Portadoras/genética , Inversión Cromosómica , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Médula Espinal/anomalías , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 7/genética , Asesoramiento Genético , Pruebas Genéticas , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Linaje , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA