Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 630(8018): 968-975, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867043

RESUMEN

Obesity is a leading risk factor for progression and metastasis of many cancers1,2, yet can in some cases enhance survival3-5 and responses to immune checkpoint blockade therapies, including anti-PD-1, which targets PD-1 (encoded by PDCD1), an inhibitory receptor expressed on immune cells6-8. Although obesity promotes chronic inflammation, the role of the immune system in the obesity-cancer connection and immunotherapy remains unclear. It has been shown that in addition to T cells, macrophages can express PD-19-12. Here we found that obesity selectively induced PD-1 expression on tumour-associated macrophages (TAMs). Type I inflammatory cytokines and molecules linked to obesity, including interferon-γ, tumour necrosis factor, leptin, insulin and palmitate, induced macrophage PD-1 expression in an mTORC1- and glycolysis-dependent manner. PD-1 then provided negative feedback to TAMs that suppressed glycolysis, phagocytosis and T cell stimulatory potential. Conversely, PD-1 blockade increased the level of macrophage glycolysis, which was essential for PD-1 inhibition to augment TAM expression of CD86 and major histocompatibility complex I and II molecules and ability to activate T cells. Myeloid-specific PD-1 deficiency slowed tumour growth, enhanced TAM glycolysis and antigen-presentation capability, and led to increased CD8+ T cell activity with a reduced level of markers of exhaustion. These findings show that obesity-associated metabolic signalling and inflammatory cues cause TAMs to induce PD-1 expression, which then drives a TAM-specific feedback mechanism that impairs tumour immune surveillance. This may contribute to increased cancer risk yet improved response to PD-1 immunotherapy in obesity.


Asunto(s)
Neoplasias , Obesidad , Receptor de Muerte Celular Programada 1 , Macrófagos Asociados a Tumores , Animales , Femenino , Humanos , Masculino , Ratones , Presentación de Antígeno/efectos de los fármacos , Antígeno B7-2/antagonistas & inhibidores , Antígeno B7-2/inmunología , Antígeno B7-2/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Glucólisis/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Obesidad/inmunología , Obesidad/metabolismo , Fagocitosis/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos
2.
J Biol Chem ; 300(7): 107418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815867

RESUMEN

ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Empalme Alternativo , Neoplasias , Humanos , Animales , Ratones , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fenotipo , Exones , Acetilación
4.
Nature ; 615(7951): 224-225, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854731
5.
Artículo en Inglés | MEDLINE | ID: mdl-38858082

RESUMEN

Metabolic reprogramming in cancer allows cells to survive in harsh environments and sustain macromolecular biosynthesis to support proliferation. In addition, metabolites play crucial roles as signaling molecules. Metabolite fluctuations are detected by various sensors in the cell to regulate gene expression, metabolism, and signal transduction. Metabolic signaling mechanisms contribute to tumorigenesis by altering the physiology of cancer cells themselves, as well as that of neighboring cells in the tumor microenvironment. In this review, we discuss principles of metabolic signaling and provide examples of how cancer cells take advantage of metabolic signals to promote cell proliferation and evade the immune system, thereby contributing to tumor growth and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA