Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 42(2): 448-465, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30066402

RESUMEN

Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Mitocondrias/metabolismo , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/crecimiento & desarrollo , Clorofila/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiología , Transducción de Señal/fisiología , Agua/metabolismo
2.
Plant J ; 92(1): 95-109, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28715118

RESUMEN

The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Frutas/citología , Frutas/genética , Frutas/crecimiento & desarrollo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/crecimiento & desarrollo , Óvulo Vegetal/citología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , ARN de Planta/genética , Factores de Transcripción/genética
3.
Plant Cell Rep ; 37(9): 1257-1268, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29947954

RESUMEN

KEY MESSAGE: A seed maturation protein gene (CaSMP) from Coffea arabica is expressed in the endosperm of yellow/green fruits. The CaSMP promoter drives reporter expression in the seeds of immature tomato fruits. In this report, an expressed sequence tag-based approach was used to identify a seed-specific candidate gene for promoter isolation in Coffea arabica. The tissue-specific expression of the cognate gene (CaSMP), which encodes a yet uncharacterized coffee seed maturation protein, was validated by RT-qPCR. Additional expression analysis during coffee fruit development revealed higher levels of CaSMP transcript accumulation in the yellow/green phenological stage. Moreover, CaSMP was preferentially expressed in the endosperm and was down-regulated during water imbibition of the seeds. The presence of regulatory cis-elements known to be involved in seed- and endosperm-specific expression was observed in the CaSMP 5'-upstream region amplified by genome walking (GW). Additional histochemical analysis of transgenic tomato (cv. Micro-Tom) lines harboring the GW-amplified fragment (~ 1.4 kb) fused to uidA reporter gene confirmed promoter activity in the ovule of immature tomato fruits, while no activity was observed in the seeds of ripening fruits and in the other organs/tissues examined. These results indicate that the CaSMP promoter can be used to drive transgene expression in coffee beans and tomato seeds, thus representing a promising biotechnological tool.


Asunto(s)
Coffea/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/metabolismo , Solanum lycopersicum/metabolismo , Coffea/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Semillas/genética
4.
J Exp Bot ; 63(15): 5689-703, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22915742

RESUMEN

Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.


Asunto(s)
Diferenciación Celular/genética , Variación Genética/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Solanum lycopersicum/genética , Alelos , Cotiledón/anatomía & histología , Cotiledón/genética , Cotiledón/fisiología , Técnicas de Cultivo , Flores/anatomía & histología , Flores/genética , Flores/fisiología , Genotipo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/fisiología , Meristema/anatomía & histología , Meristema/genética , Meristema/fisiología , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Regeneración/genética , Plantones/anatomía & histología , Plantones/genética , Plantones/fisiología , Transducción de Señal/fisiología
5.
Mol Hortic ; 2(1): 12, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789497

RESUMEN

Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA