Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroscience ; 153(4): 1213-24, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18455318

RESUMEN

Akinesia (or absence of movement) is a prominent feature of Parkinson's disease. Akinetic symptoms, however, are also observed in depression and schizophrenia, which support the hypothesis that akinesia involves more than only motor behavior. A common feature of these disorders is the disruption of dopamine homeostasis in the CNS. Here we aimed at relating the respective involvement of the nigrostriatal and mesocortical dopaminergic pathways to akinesia. We investigated in the rat the relative effects of selective bilateral partial lesions of substantia nigra pars compacta (SNc) or ventral tegmental area (VTA) which did not affect locomotion, on fine motor, motivational and cognitive behaviors. Motor impairments were measured by the evaluation of fine motor control in the stepping test and in the paw reaching test. Cognitive functions were assessed by various paradigms: spontaneous alternation in the Y maze and object exploration task. Motivational behavior was evaluated by the 100-pellets test. The results suggested that specific behavioral impairments are obtained following selective lesions of either SNc or VTA. SNc-lesioned rats exhibited deficits in fine motor functions as previously described in animal models of Parkinson's disease, whereas VTA-lesioned rats demonstrated traits of perseveration without significant motor impairments.


Asunto(s)
Conducta Animal/fisiología , Sustancia Negra/lesiones , Sustancia Negra/fisiología , Área Tegmental Ventral/lesiones , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Locomoción/efectos de los fármacos , Locomoción/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Destreza Motora/efectos de los fármacos , Destreza Motora/fisiología , Oxidopamina/toxicidad , Ratas , Ratas Wistar , Simpaticolíticos/toxicidad
2.
Neuroscience ; 211: 13-27, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22465440

RESUMEN

Major limitations to the pharmacotherapy of Parkinson's disease (PD) are the motor complications resulting from L-DOPA treatment. Abnormal involuntary movements (dyskinesia) affect a majority of the patients after a few years of L-DOPA treatment and can become troublesome and debilitating. Once dyskinesia has debuted, an irreversible process seems to have occurred, and the movement disorder becomes almost impossible to eliminate with adjustments in peroral pharmacotherapy. There is a great need to find new pharmacological interventions for PD that will alleviate parkinsonian symptoms without inducing dyskinesia. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned non-human primate model is an excellent symptomatic model of PD and was the first model used to reproduce L-DOPA-induced dyskinesia experimentally. As it recapitulates the motor features of human dyskinesia, that is, chorea and dystonia, it is considered a reliable animal model to define novel therapies. Over the last decade, rodent models of L-DOPA-induced dyskinesia have been developed, having both face validity and predictive validity. These models have now become the first-line experimental tool for therapeutic screening purposes. The application of classical 6-hydroxydopamine (6-OHDA) lesion procedures to produce rodent models of dyskinesia has provided the field with more dynamic tools, since the versatility of toxin doses and injection coordinates allows for mimicking different stages of PD. This article will review models developed in non-human primate and rodents to reproduce motor complications induced by dopamine replacement therapy. The recent breakthroughs represented by mouse models and the relevance of rodents in relation to non-human primate models will be discussed.


Asunto(s)
Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Animales , Descubrimiento de Drogas/métodos , Discinesia Inducida por Medicamentos/complicaciones , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA