Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cardiovasc Pharmacol ; 56(2): 147-55, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20714241

RESUMEN

BACKGROUND: Hypoxia inducible factors (HIFs) are transcription factors that are regulated by HIF-prolyl 4-hydroxylases (PHDs) in response to changes in oxygen tension. Once activated, HIFs play an important role in angiogenesis, erythropoiesis, proliferation, cell survival, inflammation, and energy metabolism. We hypothesized that GSK360A, a novel orally active HIF-PHD inhibitor, could facilitate local and systemic HIF-1 alpha signaling and protect the failing heart after myocardial infarction (MI). METHODS AND RESULTS: GSK360A is a potent (nanomolar) inhibitor of HIF-PHDs (PHD1>PHD2 = PHD3) capable of activating the HIF-1 alpha pathway in a variety of cell types including neonatal rat ventricular myocytes and H9C2 cells. Male rats treated orally with GSK360A (30 mg x kg x d) had a sustained elevation in circulating levels of erythropoietin and hemoglobin and increased hemoxygenase-1 expression in the heart and skeletal muscle. In a rat model of established heart failure with systolic dysfunction induced by ligation of left anterior descending coronary artery, chronic treatment with GSK360A for 28 days prevented the progressive reduction in ejection fraction, ventricular dilation, and increased lung weight, which were observed in the vehicle-treated animals, for up to 3 months. In addition, the microvascular density in the periinfarct region was increased (>2-fold) in GSK360A-treated animals. Treatment was well tolerated (survival was 89% in the GSK360A group vs. 82% in the placebo group). CONCLUSIONS: Chronic post-myocardial infarction treatment with a selective HIF PHD inhibitor (GSK360A) exerts systemic and local effects by stabilizing HIF-1 alpha signaling and improves long-term ventricular function, remodeling, and vascularity in a model of established ventricular dysfunction. These results suggest that HIF-PHD inhibitors may be suitable for the treatment of post-MI remodeling and heart failure.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Glicina/análogos & derivados , Factor 1 Inducible por Hipoxia/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Quinolonas/farmacología , Remodelación Ventricular/efectos de los fármacos , Animales , Línea Celular , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Glicina/farmacología , Hemodinámica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley
2.
J Mol Cell Cardiol ; 46(5): 728-38, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19358334

RESUMEN

Hypoxic heart disease is a predominant cause of disability and death worldwide. Since adult mammalian hearts are incapable of regeneration after hypoxia, attempts to modify this deficiency are critical. As demonstrated in zebrafish, recall of the embryonic developmental program may be the key to success. Because thymosin beta4 (TB4) is beneficial for myocardial cell survival and essential for coronary development in embryos, we hypothesized that it reactivates the embryonic developmental program and initiates epicardial progenitor mobilization in adult mammals. We found that TB4 stimulates capillary-like tube formation of adult coronary endothelial cells and increases embryonic endothelial cell migration and proliferation in vitro. The increase of blood vessel/epicardial substance (Bves) expressing cells accompanied by elevated VEGF, Flk-1, TGF-beta, Fgfr-2, Fgfr-4, Fgf-17 and beta-Catenin expression and increase of Tbx-18 and Wt-1 positive myocardial progenitors suggested organ-wide recall of the embryonic program in the adult epicardium. TB4 also positively regulated the expression and phosphorylation of myristoylated alanine-rich C-kinase substrate (Marcks), a direct substrate and indicator of protein kinase C (PKC) activity in vitro and in vivo. PKC inhibition significantly reduced TB4 initiated epicardial thickening, capillary growth and the number of myocardial progenitors. Our results demonstrate that TB4 is the first known molecule capable of organ-wide activation of the embryonic coronary developmental program in the adult mammalian heart after systemic administration and that PKC plays a significant role in the process.


Asunto(s)
Corazón/embriología , Pericardio/citología , Pericardio/enzimología , Proteína Quinasa C/metabolismo , Células Madre/citología , Timosina/metabolismo , Animales , Capilares/efectos de los fármacos , Capilares/embriología , Capilares/crecimiento & desarrollo , Linaje de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Neovascularización Fisiológica/efectos de los fármacos , Pericardio/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Células Madre/efectos de los fármacos , Timosina/farmacología
3.
Mol Cell Biol ; 25(8): 3173-81, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798203

RESUMEN

Myocardin and the myocardin-related transcription factors (MRTFs) MRTF-A and MRTF-B are coactivators for serum response factor (SRF), which regulates genes involved in cell proliferation, migration, cytoskeletal dynamics, and myogenesis. MRTF-A has been shown to translocate to the nucleus and activate SRF in response to Rho signaling and actin polymerization. Previously, we described a muscle-specific actin-binding protein named striated muscle activator of Rho signaling (STARS) that also activates SRF through a Rho-dependent mechanism. Here we show that STARS activates SRF by inducing the nuclear translocation of MRTFs. The STARS-dependent nuclear import of MRTFs requires RhoA and actin polymerization, and the actin-binding domain of STARS is necessary and sufficient for this activity. A knockdown of endogenous STARS expression by using small interfering RNA significantly reduced SRF activity in differentiated C2C12 skeletal muscle cells and cardiac myocytes. The ability of STARS to promote the nuclear localization of MRTFs and SRF-mediated transcription provides a potential muscle-specific mechanism for linking changes in actin dynamics and sarcomere structure with striated muscle gene expression.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/fisiología , Desarrollo de Músculos/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Núcleo Celular/química , Proteínas de Unión al ADN/análisis , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/análisis , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
4.
J Biol Chem ; 282(11): 8393-403, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17194709

RESUMEN

In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.


Asunto(s)
Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Proteínas con Dominio LIM , Ratones , Proteínas de Microfilamentos/química , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Unión Proteica , Retina/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
5.
Genes Dev ; 20(12): 1545-56, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16778073

RESUMEN

The association of transcriptional coactivators with sequence-specific DNA-binding proteins provides versatility and specificity to gene regulation and expands the regulatory potential of individual cis-regulatory DNA sequences. Members of the myocardin family of coactivators activate genes involved in cell proliferation, migration, and myogenesis by associating with serum response factor (SRF). The partnership of myocardin family members and SRF also controls genes encoding components of the actin cytoskeleton and confers responsiveness to extracellular growth signals and intracellular changes in the cytoskeleton, thereby creating a transcriptional-cytoskeletal regulatory circuit. These functions are reflected in defects in smooth muscle differentiation and function in mice with mutations in myocardin family members. This article reviews the functions and mechanisms of action of the myocardin family of coactivators and the physiological significance of transcriptional coactivation in the context of signal-dependent and cell-type-specific gene regulation.


Asunto(s)
Movimiento Celular , Regulación de la Expresión Génica , Desarrollo de Músculos/genética , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Proliferación Celular , Humanos , Proteínas Nucleares/química , Transducción de Señal , Transactivadores/química
6.
Dev Biol ; 288(2): 502-13, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16310178

RESUMEN

The Serum Response Factor (SRF) coactivator myocardin stimulates the transcription of multiple muscle genes during cardiac and smooth muscle development. Mouse embryos lacking myocardin die during the earliest stages of smooth muscle development and fail to express multiple smooth muscle marker genes in the embryonic dorsal aorta and other vascular structures. In this study, we used mutant embryonic stem cell lines to further define the role of myocardin in smooth muscle differentiation and vascular development. Misexpression of myocardin in undifferentiated muscle stem cells resulted in efficient activation of smooth muscle genes, and weaker activation of genes involved in cardiac and skeletal muscle differentiation. Remarkably, myocardin(-/-) embryonic stem cell lines differentiated into smooth muscle cells in vitro, although these cells expressed significantly decreased levels of smooth muscle contractile genes. Moreover, genetically labeled myocardin(-/-) ES cells were able to contribute to smooth muscle lineages in vivo. These results indicate that while myocardin function is sufficient for activation of SRF-dependent muscle gene expression in multiple cell types, myocardin-independent mechanism(s) can suffice for expression in some smooth muscle lineages.


Asunto(s)
Diferenciación Celular/fisiología , Perfilación de la Expresión Génica , Músculo Liso/citología , Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Células Madre/citología , Transactivadores/metabolismo , Animales , Línea Celular , Linaje de la Célula/fisiología , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Mutantes , Músculo Esquelético/citología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Músculo Liso/embriología , Mutación , Miocardio/citología , Miocardio/metabolismo , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transactivadores/genética
7.
Proc Natl Acad Sci U S A ; 100(12): 7129-34, 2003 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12756293

RESUMEN

Virtually all smooth muscle genes analyzed to date contain two or more essential binding sites for serum response factor (SRF) in their control regions. Because SRF is expressed in a wide range of cell types, it alone cannot account for smooth muscle-specific gene expression. We show that myocardin, a cardiac muscle- and smooth muscle-specific transcriptional coactivator of SRF, can activate smooth muscle gene expression in a variety of nonmuscle cell types via its association with SRF. Homodimerization of myocardin is required for maximal transcriptional activity and provides a mechanism for cooperative activation of smooth muscle genes by SRF-myocardin complexes bound to different SRF binding sites. These findings identify myocardin as a master regulator of smooth muscle gene expression and explain how SRF conveys smooth muscle specificity to its target genes.


Asunto(s)
Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , Células Cultivadas , Dimerización , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Músculo Liso/crecimiento & desarrollo , Mutación , Miocardio/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ratas , Factor de Respuesta Sérica/metabolismo , Transactivadores/química , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA